
Venses @ HaSpeeDe2 & SardiStance: Multilevel Deep Linguistically 
Based Supervised Approach to Classification 

Rodolfo Delmonte 
Dipartimento di Studi Linguistici e Culturali 

Comparati 
Ca’ Bembo – Dorsoduro 1075 – Università Ca’ 

Foscari – 30131 Venezia 
delmont@unive.it 

 
 

Abstract 

In this paper1 we present the results obtained 
with ItVENSES a system for syntactic and se-
mantic processing that is based on the parser for 
Italian called ItGetaruns to analyse each sen-
tence. In previous EVALITA tasks we only used 
semantics to produce the results. In this year 
EVALITA, we used both a fully and mixed sta-
tistically based approach and the semantic one 
used previously. The statistic approaches are all 
characterized by the use of n-grams and the usual 
tf-idf indices. We added another parameter called 
the Kullback-Leibler Divergence to compute 
similarities. In addition we used emoticons and 
hashtags. Results for the two runs allowed have 
been fairly low – around 40% F1-score. We con-
tinued producing other runs on the basis of the 
statistical approach and after receiving the gold-
test version and the evaluation script we discov-
ered that in one of these additional runs - the 
fourth - we improved up to 54% macro F1 for 
HaSpeeDe2 task and up to 48% macro F1 for 
Sardines. 

1 Introduction 

In this paper we will present work carried out by 
the Venses Team in Evalita 2020 (Basile et. 
2020). We will comment in the following both 
on the Sardines Task (Cignarella et al., 2020) and 
on the HaSpeeDe2 Task (Sanguinetti et al. 
2020). The reason for this is discussed in the sec-
tions below, but it has been basically determined 
by the overlapping in the choice of the features 
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to adopt for the classification tasks. To show 
how the two tasks share part of the features we 
created a table where we compare the output of 
the first step in the process, i.e. the creation of a 
frequency list dictionary. The frequency list that 
we show in Table 1. below is made of nominal 
entities that were extracted automatically from 
the total frequency list. We call this frequency 
list InstanceList and the position occupied by 
each entry as InstanceListPosition and the Rank 
as InstanceRank. In the first column we indicate 
rank; in the following two columns we report the 
word/s preceded by its frequency value. In the 
second couple of columns, column no. 4 and 5 
we make a comparison between the two corpora 
based on frequency lists and the rank each entry 
has received. 
We use three types of values: the frequency val-
ue from the general frequency list derived from 
the corpus; the rank position in the InstanceList 
in case the word appears in both InstanceLists; 
and the word “nil” in case the entry is not present 
in the general frequency list of the comparing 
corpus. In column 4 the comparison is made be-
tween the first list (HaSpeeDe2) and its instances 
and the second list (SardiStance). Every word is 
associated to the rank in the InstanceList and a 
second element which can be one of three: the 
position in the second list if available; the posi-
tion in the general FrequencyList of the com-
pared corpus; nil in case the word is not present. 

 



 

 
 
For instance, we can see that the words rom, mi-
granti, profughi, terroristi, nomadi, islamici/rom, 
migrants, refugees, terrorists, nomads ,islamists 
are not present in the second list and so they 
characterize the first corpus (HaSpeeDe2) as be-
ing different from the Sardines one, specializing 
it in a particular list of topics or keywords. When 
we look at column 5, where the comparison is 
made in reverse order, we discover that sardine, 
bibbiano, bonaccini/sardines, bibbiano, bonac-
cini are not present in the first list. Most im-
portantly we discovered that the most frequent 
words of the two lists are not shared, “rom”, in 
list 1, and “sardine” in list two. In the sections 
below we present the module for supervised au-
tomatic classification and the experiments that 
we devised using basically two approaches: a 
semantic approach vs a statistic approach. 

In Table 2 and 3 we report the subdivision into 
classes of the two training and test corpora for 
the two tasks, SardiStance and HaSpeeDe2 with 
percent values to allow for comparisons. As can 
be noticed in the SardiStance corpus the majority 
class is constituted by AGAINST, followed by 
FAVOR and then NONE. In the Test set, the dis-
tribution into the three classes favors AGAINST 
and for the other two classes is almost identical. 
The same happens in the other corpus, the 
HaSpeeDe2, where we notice a majority of oc-
currencies for the NULL class in the Training 
corpus. In the Test set, this is still valid but we 
see an important increase of the BothHate-
andStereo class and a strong reduction of the Ste-
reo class. Of course, these differences in class 
distribution may have influenced the final out-
come, in case as it is ours - there is a default 
choice at the end of the computation for each 



tweet class. Here below some general quantita-
tive information for the two corpora: 
 
Corpus/ 
Class 

HaSpeeDe2 
Abs.Val. 

HaSpeeDe2 
Percent 

NULL 3,049 44.5825% 
OnlyHATE   748 10.9372% 
OnlySTEREO 1,024 14.9729% 
BothHATEAnd 
STEREO 

2,018 29.5072% 

Totals 6,839 100% 
Table 2. Distribution of Classes for HaSpeeDe2 

Tweets training and test corpora 
 

Corpus/ 
Class 

Sard 
Train 

Sard. 
% 

Sard. 
Test 

Sard 
% 

NONE 515 24.15 172 15.49 
AGAINST 1,028 48.21 742 66.84 
FAVOR 589 27.66 196 17.65 
Totals 2,132 100% 1110 100% 

Table 3. Distribution of Classes for SardiStance 
training and test corpora 

2 The Module for Supervised Automat-
ic Classification 

We present the modules for automatic classifica-
tion that uses three different approaches: a fully 
BOW and statistic one,  a fully semantically 
based one, and a mixed both bag-of-words and 
(partially) semantically-based one. With the ex-
ception of the fully semantic approach, the re-
maining approaches are however characterized 
by the use of n-grams and a fully supervised 
method to create the model. In all approaches the 
model is created on the basis of an automatically 
built dictionary of unique wordforms sorted by 
frequency where the first most frequent 25 nom-
inal expressions are chosen as supplied instances 
for n-grams construction.  
Eventually, we created six different classifiers 
that we will present in the sections below. They 
are a fully semantic classifier, a lexically-based 
semantic classifier, a mixed statistic and lexical 
semantic classifier using supervised n-grams, a 
fully statistic tf-idf classifier based on differ-
ences, a fully statistic Kullback-Leibler Diver-
gence (hence KLD) classifier based on differ-
ences, a classifier based on emoticons and on 
hashtags.  
First approach. 
We will start by describing the lexically-based 
semantic classifier. This is used for both tasks 
but in a different manner. Whereas in the seman-
tic classifier it is treated as an important compo-

nent of the evaluation module, it becomes just a 
default classifier in the statistic classifiers, in 
case of failure of the previous ones. It is orga-
nized into a grid with seven slots: 
 
[Polarity, Appraisal, NegativeW, PositiveW, 
SwearW, HateW, StereoW] 
 
Polarity is computed at a propositional level by 
the deep parser and is described below. The re-
maining slots are all lexically processed. In par-
ticular Appraisal Classes are derived from previ-
ous work on political newspapers (Stingo and 
Delmonte, 2016); Swear Words, Negative and 
Positive Words are derived from previous work 
on opinion and sentiment analysis and were used 
in SenticPol (Delmonte, 2014); finally Hate-
Words and StereoWords were collected from the 
HurtLex made available by the organizers, pro-
ceeding by a manual selection of Italian words 
and discarding all English words. 
The second approach that we call semantically-
based, uses a three levels of classification. Be-
sides using an n-gram model, it uses a majority 
vote approach based on presence of emoticons 
previously classified on the basis of the training 
set. The most important module is fired in case 
of failure (no n-gram available to match) in the 
two previous steps and is totally based on seman-
tics. It builds an interpretation from deep seman-
tic analysis evaluating presence of appraisal the-
ory labeled items, presence of hate/stereotype 
items from lexical lookup and their propositional 
level semantics. In the sections below we de-
scribe in details the three level classification 
module. This approach covers 93% of the whole 
training set – but see below. However its predict-
ing power is not so great.  
Third Approach. 
The bag-of-words approach associates a numeri-
cal parameter to each word and the resulting sum 
for the each tweet. At first we uses TF-IDF as the 
mathematical formula for characterizing each 
word occurrence and each tweet. We applied TF-
IDF to each word in each tweet and used the out-
put to map the indices to n-grams and produce a 
model. Then we used this model to predict the 
similarity with n-grams obtained from the held 
out development set of tweets. The results were 
however very poor, 20% accuracy, which added 
to 12% obtained from the emoticons model made 
a 32% final accuracy.  
We assumed the reason was that tweets are too 
short to be useful for term-frequency computa-
tion. In the majority of the cases wordforms ap-



peared only once in each document/tweet – apart 
from stop words. So we searched a formula 
which could be better suited for this task and 
could represent both frequency and dispersion at 
corpus level. We found it in a number of papers 
published by Gries (2008, 2020), but also in a 
paper online by Koos Wilt. The important part of 
the formula regards the role of frequency of oc-
currence in the total corpus which is used to pro-
duce TF so that it would resemble a probability 
of occurrence and the concept of entropy2. Gries 
defines this formula as a way of characterizing 
“keyness” by including dispersion information. 
To do that he augmented frequency information 
by using the Kullback-Leibler Divergence. 
Wordforms can become key not only for their 
frequency of occurrence, their dispersion or both. 
The formula is able to “tease apart distributional 
differences”. 
 
p = frequency of w in document A of the corpus / 
divided by total frequency of w in the corpus 
q = total number of tokens in document A of the 
corpus / divided by total number of tokens in the 
corpus 
 
KLD = p X log(p/q)  è  ∑ p X log(p/q) 
 
In the same paper Gries suggests to compute 
keyness also to n-grams besides multiword ex-
pressions and this is what we did. The summa-
tion applies to the document/tweet and is used to 
differentiate each tweet from one another and 
produce a similarity or distance evaluation. We 
proceeded as before to verify the predictive abil-
ity of this new formula and came out with 
44/45% accuracy, a 12% gain. 

3 The Semantically-Based Module And 
The N-gram Models 

The general procedure we organized for the three 
approaches is as follows.  
At first we massaged the text in order to obtain a 
normalized version – wrong word accents like 
“nè” instead of “né” etc. The text is then turned 
into an xml file to suit the Prolog input require-
ments imposed by the system. It is then precom-

                                                
2 According to Wilt Koos, ibid. pag.2: “Classification ac-
cording to the KLD takes place on the assumption the trai-
ning set reflects order and the test set, a document to be 
categorized, reflects a deviation from this order and is there-
fore chaotic or entropic. The lower the entropy regarding 
the training set, the more likely it is a given test set belongs 
to that training set. “ 

piled by a set of regular expressions: we separate 
the hash symbol # from its tag; we separate the 
@ symbol from the following username; we can-
cel the word URL; we separate all punctuation 
marks from a preceding or following word; then 
we lowercase all words and produce a sorted list 
which is then used to count frequencies associat-
ed to each wordform and produce the dictionary 
of unique wordforms or types. 
Then we choose the first 25 nominal entities 
from the list erasing generic or general nouns 
like “person”, “people” etc. The final list of fea-
tures is treated as supplied instances to search for 
the construction of n-grams from 4-gram up to 8-
grams: we take all sequences of four/eight tokens 
where the ending or beginning word must be tak-
en from the list of instances. If eight is not avail-
able we accept down to 4-grams. Instances are 
collapsed under three unique general topic which 
are the following ones: racism, politics, sar-
dines/Salvini. 
Since we process each tweet using lemmata in 
every approach, we do sentence splitting and 
tagging. Every tagged token is then lemmatized 
and in the semantically-based approach it is sub-
sequently associated to a lexically validated 
three-valued sentiment label.  
In the semantically-based approach, we then 
compute syntactic constituency and dependen-
cies for every sentence. This information is 
passed to the semantic processor which produces 
predicate argument structures for every sentence 
present in each tweet. In case no punctuation is 
available and the sentence is longer than 40 to-
kens we activate an empirical set of rules to in-
sert punctuation and divide the tweet into sen-
tences by checking the presence of words start-
ing with uppercase letter and not being a Named 
Entity. If the sentence splitter fails we activate a 
search for sentence level coordinating or subor-
dinating conjunctions. Many tweets are just 
fragments and contain a list of nouns and adjec-
tives: we add a dummy verb ESSERE/to_be in 
order to allow the semantics to work. 
Propositional level semantics is made by the 
computation of factivity, negation, subjectivity, 
modality, speech_act, diathesis, which then pro-
duce a fixed set of semantic labels to allow for a 
correct interpretation.  
In the mixed approach and in the statistics-only 
approach we procede as follows. Before produc-
ing n-grams, we erase punctuation with the ex-
ception of the hash symbol that informs the sys-
tem of the presence of an hastag or a slogan. 
Similarity is computed by matching every lemma 



from two n-grams labeled with the same main 
topic. We established a ratio of 0.3 as the thresh-
old for acceptance, but then we check the seman-
tics be identical or very similar. We assume with 
Emily Bender that “a system trained on form 
alone cannot in principle learn meaning”3 . So we 
use an approach with is based partially on bag-
of-words n-grams – using frequency lists and n-
grams - but we associate semantic interpretation 
to every n-gram of the model. Semantics is used 
to verify and confirm the first approximation of a 
similarity measure based on wordforms 4  and 
lemmata. We assume that n-grams belonging to a 
statement cannot possibly be regarded to have 
the same meaning in case the comparison is 
made with an n-gram extracted from a proposi-
tion which has negation at propositional level. 

4 The Experiment and the Evaluation 
Module of ItVenses 

We organized our classifiers to produce two runs 
as required by the two tasks, SardiStance and 
HaSpeeDe. However, we then realized that we 
needed to produce more runs in order to take into 
account all variables involved in the statistically-
based module. Eventually we had to choose one 
modality for the single run with the statistical 
module trusting the results obtained from the 
Development set as described here below.  
To produce a development set we held out 20% 
of all training corpus - 427 tweets for 
SardiStance and 1000 tweets for HaspeeDe2 - 
that we called devtset and remodulated the n-
gram model accordingly by subtracting the n-
grams related to the same sequence of tweets.  
For HaSpeeDe2 the system produced 23,000 n-
grams for the training corpus and 19,738 for the 
development. The development set is made of 
1,000 tweets held out from the total 6839 which 
adds up to 136,536 tokens. 
For SardiStance, we have 4,993 n-grams from 
the training corpus and 4,003 for the develop-
ment: the development set is made of 427 tweets 
held out from the total 2,132 tweets, adding up to 
57,774 tokens. 
The system takes as input the analysis of one 
tweet at a time. In the mixed semantic-statistic 
                                                
3 Emily Bender at a meeting in Uppsala University organi-
zed by Joakim Nivre.	
  
4 Rather than using actual wordforms we could use the rank 
number associated to each type in the dictionary as would 
be done in current machine learning approaches. But given 
the size of the training corpus we did not think it would be 
necessary: the model for the SardiStance task takes just 
5Mb of memory and the one for Absita 10Mb. 

module, the multilevel evaluation process con-
sists of four steps which take advantage of the 
following previously compiled analyses. We 
have a full-fledged semantic analysis at proposi-
tional level; a trivalued labeling of each word-
lemma by lexically-driven sentiment dictionar-
ies; a six slot analysis of ironic/sarcastic contents 
at tweet level; a model for emoticons; a list of 
special hashtags inducing a direct evaluation. 
This is what we use in the semantic-only ap-
proach. The evaluation process is performed re-
cursively for each tweet, and starts by searching 
for presence of Emoticons extracted in the previ-
ous analysis and organized in a model: in this 
case, the decision is taken by majority vote based 
on the type of emoticons present in the tweet. As 
for the semantic-only module, the problem was 
how to select best candidate from the pool of 
model n-grams with different value labels. We 
solved this problem by a scoring procedure. We 
produced two levels of scoring: a first one based 
on the number of sentiment labels with posi-
tive/negative value producing as a score a ratio 
of the total number divided by total number of 
words in the n-gram. Negative words are valued 
the double. The second scoring analysis is based 
on the contents of the propositional level seman-
tics: here we associate 0.25 for each proposition 
marked differently from statement; another 0.25 
is added for presence of predicates different from 
“dummy” verb ESSERE; eventually another 0.25 
is added in case one of the arguments or attrib-
utes is shared with the input n-grams. 
Eventually, we imposed coincidence at the level 
of Discourse Class associated to the utterance. 
We use seven different labels: statement, ques-
tion, exclamation, negated, unreal, opinionsub-
jective, conditional. 

4.1 Creating and Accessing N-grams 
models 

If the semantics-only method needs just words 
from the two tweets to be evaluated by means of 
linguistic parameters, the two other methods or 
approaches we used are based on n-gram models 
which introduce a great number of variables. 
First of all, our n-gram model are organized in a 
different manner from the way in which they are 
usually conceived, so that their usage is also pe-
culiar and needs detailed explanation. N-grams 
are not collected randomly by recursively creat-
ing bigrams and trigrams. 
We can define three phases in the processing of 
our n-gram models: phase 1, building; phase 2, 



choosing; phase 3, evaluating. We will clarify 
each phase in details below. 
Phase 1. Building fully supervised n-gram 
models 

As explained above, we collect topic words from 
unique dictionary derived from the training set. 
Topic words are the key entry in the n-gram, in 
that n-grams are built from each tweet around 
topic words. There two constraints at the basis of 
each n-gram: one is content related and the other 
is quantity related. The quantity constraint re-
quires each n-gram to be longer than 3 words in 
sequence, in addition to the topic word. The con-
tent constraint requires that each n-gram must 
have at least a topic word at the beginning or end 
of the sequence of words. That is, each n-gram 
has a topic word as head or as tail. N-grams are 
strictly conditioned by the length of the tweet 
from which they are extracted. Short tweets may 
have only one n-gram at most or none. Long 
tweets may have two or more n-grams depending 
on their content: they would be all contained in 
the same list headed by the sum KLD index for 
that tweet. N-grams can be expressed in actual 
words or in lemmata. In the latter case, words are 
no longer available to subsequent analysis. We 
organized models with both words and lemmata. 
Every n-gram comes with the class attributed to 
the tweet in which they were contained. 

Phase 2. Choice constraints on n-grams 

Thus n-grams are each associated to two KLD 
indices, one for each word, and another one from 
the lump sum - which is unique - of all the words 
indices contained in the tweet. In this way, n-
grams coming from the same tweet can be easily 
identified and this information can be used to 
select sequences of n-grams. Sequences of n-
grams when matched with the input tweet are 
used to reinforce the similarity hypothesis. 
Choosing n-grams from the model is basically 
done on the basis of the ratio of intersecting 
words/lemmata. We established different ratios: 
one fifth or 20% of intersection, one fourth or 
25%, one third or 30% and finally half or 50% 
intersecting words/lemmata. The ratio may vary 
according to another important parameter which 
is tied to the way in which the n-gram is used. 
We can decide to use words, lemmata, but also to 
erase grammatical or function words. In case we 
erase function words in the intersection only con-
tent words will be computed, which is a much 
smaller number and requires a smaller ratio to 
compare. We tried all three choosing manners. 

Phase 3. Evaluating n-gram candidates 

Once the methods have been selected and candi-
date n-grams are extracted from the model ac-
cording to choice constraints, the outcome may 
be just one candidate and the evaluation stops or 
more than one candidate which is the rule. Now 
we have a list of candidate n-grams with the best 
ones at the top. The list may be created in a 
number of different manners. It has the KLD in-
dex inherited from the tweet and three other indi-
ces: one is the ratio of intersection 
words/lemmata, the higher this ratio the more 
relevant is the n-gram. Another index is the sum 
of the KLD indices associated to each of its 
word/lemma, the lower this sum the more rele-
vant is the ngram (rare content words have a 
lower KLD index). Finally the third index is the 
one associated to the tweet in which the n-grams 
are contained. Choosing the best candidate in 
fact usually means selecting the best candidates 
from the list, because it almost never happens 
that there is only one candidate at the top with 
the best ratio or best index. The choice requires 
collecting candidates at the top with the same 
ratio/index. However this may require another 
step since the best candidates may be associated 
to different classes. So that after the first sieve 
has reduced the number of best candidates, an-
other sieve requires selecting the most frequent 
class and this is done by reordering the best can-
didates on the basis of their class. In fact, this 
might also be one possible general method: ra-
ther that selecting only best candidates, one 
might reorder all candidates chosen on the basis 
of the intersection ratio, and count and choose 
the most frequent class. Eventually, another 
evaluation modality can be derived from the 
KLD indices. We compute differences on the 
basis of the KLD sum index for each model n-
gram compared to the input n-gram and use this 
difference as the relevant index. When candi-
dates are sorted in a list, the top will be populat-
ed by the lowest indices which can be used to 
characterize similarity. We chose the class of the 
top n-gram, but also tried a best way by selecting 
the first n-gram carrying a non negative index. 
Negative sums may still indicate higher differ-
ences between two n-grams. 
Thus overall we come up with 6 different meth-
ods multiplied by two (function words erased/all 
words/lemmata), which amounts to 12 different 
methods. We experimented them all but at the 
end we concentrated only on a few.Since it is 
reasonable to assume that not all tweets of the 



training set will be classified in the model due to 
the lack of an instance defined by the list of au-
tomatically derived keywords in the training cor-
pus, we ascertained at first what was the cover-
age of the training text for the development set, 
using in this case the model for the training set.  
We report here below both training set coverage 
of the development set and development set re-
sults for both tasks. As can be easily noticed, 
coverage for the semantic-statistic module is 
poor, and the same applies for the so-called lexi-
cal-semantic module, which is even worse and as 
said above we only used as default. 
 
 Cover 

Sardines 
Devel 
Sardines 

Cover 
HaSpDe 

Devel 
HaSpDe 

Sem-
Stat 

57.98% 35.31% 58.34% 38.67% 

Stat-
Only 

93.91% 39% 92.6% 44.8% 

Lex-
Sem 

 39.34%  37.8% 

Table 4. Coverage and Results for the Develop-
ment Set for both Tasks 

5 Results and Discussion 

We present at first results of the SardiStance task 
where . 

Task SardiStance 

Run1 (Semantic module) 
Macro-F1 0.3881500114277561  
 
Run2 (Statistic module) 
Macro-F1 0.3637025029179095  
 
We then performed additional runs with the sta-
tistical module always with the test set. However 
we were unable to know the results until the 

evaluation script and the Test Gold set were dis-
tributed to all participants. We then realized that 
we had one run with the worst result and another 
with the best result. The former run was by 
choosing the first candidate from the list pro-
posed by the KDL indices with a positive value 
in the list of candidated produced by a difference 
computed between the index of testset n-grams 
and the index of trainmodel n-grams. The latter 
run was instead obtained by choosing the best 
candidate – the one with higher value in terms of 
number of shared words from the intersection at 
word level between testset n-gram and trainmod-
el n-gram, and got the following results: 
 
Task SardiStance 

Run3 (Statistic module – first candidate with 
positive value) 
Macro-F1 0.299607934  
 
Run4 (Statistic module – higher word inter-
section) 
Macro-F1 0.427668958  
 
Even considering the last fourth run our ranking 
would not change. We assume that basing the 
evaluation on one n-gram alone is not the best 
solution. So we modified our evaluation proce-
dure by requiring a sequence of at least two n-
grams for each tweet/news to be chosen at the 
same time, using the same tweet-related KLD to 
select them. In this case we were able to cover 
more text and get a better similarity measure that 
we report in the subsection below. 
We present here below the official results ob-
tained at first for the HaSpeeDe2 task A-B both 
for News and for Tweets, and then the results 
obtained for SardiStance. Consider that we could 
report results for two runs only, and we choose 
the Semantic-Statistic and the Statiscs-Only. 

 
Task HaspeeDe2 - News 
Task A 
RUN-1   RUN-2 
Macro-F1: 0.5024333 Macro-F1: 0.3805618 
Task B 
RUN-1   RUN-2 
Macro-F1: 0.5386702 Macro-F1: 0.3671441 

Task HaspeeDe2 - Tweets 
Task A 
RUN-1   RUN-2 
Macro-F1: 0.5054034 Macro-F1: 0.4726022 
Task B 
RUN-1   RUN-2 
Macro-F1: 0.5078902 Macro-F1: 0.4671661 

 
As for the SardiStance tasks, results for the 
HaSpeeDe2 task, obtained and delivered in due 
time are not particularly satisfactory, even 
though they are in line to results obtained for the 
development set. As for the SardiStance tasks,  in 

fact there is a remarkable difference from the 
result obtained for the Development set in the 
Semantic-statistic.  

5.1 The Improvements in the Statistical 
Module  



After receiving the Test Gold version and the 
evaluation script, we continued producing other 
runs on the basis of the statistical approach and 
the choice of the algorithm we had available, for 
instance restricting choice of candidates only to 
those in which two or more n-grams had been 
selected. We discovered that in one these addi-
tional runs - the fifth for SardiStance and the 
sixth for HaSpeeDe2- we improved up to 54% 
macro-F1 for HaSpeeDe2 task and up to 48% 
macro-F1 for SardiStance. Here below the results 
for SardiStance and further the ones for 
HaSpeeDe2. 

 Run-5 SardiStance Task 

Macro F1 0.484871151  
 

Run-6 HaSpeeDe2 Task News 
Task A   Task B 
Macro-F1: 0.53828428 Macro-F1: 0.54071432 
 
Run-6 HaSpeeDe2 Task Tweets 
Task A   Task B 
Macro-F1: 0.52836397 Macro-F1: 0.53965935 

6 Conclusion 

In this paper we presented the system we used 
for the two tasks HaSpeeDe2 and SardiStance. 
We used different approaches one of which was 
based on previous participation in similar Evalita 
tasks. Two methods are however innovative in 
their use of fully supervised n-grams, automati-
cally derived. We use statistical measure to clas-
sify n-grams and a variety of different possible 
solutions which we explain in detail. The high 
number of possible results are however only 
evaluated against the development set. We are 
convinced that participants to these tasks which 
are mainly directed to the use of commonly 
available machine-learning software - should be 
allowed to propose a higher number of runs due 
to the variability of behaviour of the algorithm 
when relevant parameters in statistical tools are 
modified. 
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