
Venses @ AcCompl-It: Computing Complexity vs Acceptability with
a Constituent Trigram Model and Semantics

Rodolfo Delmonte
Dipartimento di Studi Linguistici e Culturali

Comparati
Ca’ Bembo – Dorsoduro 1075 – Università

Ca’ Foscari – 30131 Venezia
delmont@unive.it

Abstract

In this paper1 we present work carried out for the
Ac-ComplIt task. ItVENSES is a system for syn-
tactic and semantic processing that is based on
the parser for Italian called ItGetaruns to analyse
each sentence. In previous EVALITA tasks we
only used semantics to produce the results. In
this year EVALITA, we used both a statistically
based approach and the semantic one used previ-
ously. The statistic approach is characterized by
the use of trigrams of constituents computed by
the system and checked against a trigram model
derived from the constituency version of VIT –
Venice Italian Treebank. Results measured in
term of a correlation, are not particularly high,
below 50% the Acceptability task and slightly
over 30% the Complexity one.

1 Introduction

In this paper we will present work carried out by
the Venses Team in Evalita 2020 (Basile et.
2020). We will describe in detail in the following
work carried out on the Ac-ComplIt task. We
present the modules for automatic classification
that uses two different approaches: a fully BOW
and statistic one, a fully semantically based one.
The trigram model is built on the basis of the
analysis performed by ItVenses at different lev-
els of linguistic complexity.
The procedure we organized for the semantical-
ly-based analysis is as follows.

1 Copyright © 2020 for this paper by its authors. Use per-
mitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

At first we massaged the text in order to obtained
a normalized version – wrong word accents like
“nè” instead of “né” etc. The text is then turned
into an xml file to suit the Prolog input require-
ments imposed by the system.
 ItGetarun receives as input a string – the sen-
tence(s) to be analysed - which is then tokenized
into a list. The list is then sentence split, fully
tagged, disambiguated and chunked. Sentence
level chunks are then parsed together into a full
sentence structure which is passed to the Island-
Based predicate-argument structure (hence PAS)
parser.
The output of the semantic parser is passed on to
the module for classification called ItVenses.
ItVenses inherits constituent labels from chunked
sentences which have been first destructured, i.e.
all embedded structures have been collapsed and
linearized in order to construct a sequence of lin-
ear constituent labels.
In addition, ItVenses takes into account agree-
ment, negation and non-factuality usually
marked by unreal mood, information available at
propositional level, used to modify previously
assigned polarity from negative to positive, on
the basis of PAS and their semantics. For this
reason, we keep trace of hate and stereo words
on a lexical basis, together with presence of ne-
gation. In particular, hate and stereo words and
sentiment polarities (negative and positive), are
checked together one by one, in order to verify
whether polarity has to be attenuated, shifted or
inverted (see Polanyi & Zaenen, 2006) as a result
of the presence of intensifiers, maximizers, min-
imizers, diminishers, or simply negations at a
higher than constituent level (see Ohana et al.
2016). All this information comes from the Deep

Island Parser (hence DIP) described in the sec-
tion below.

2 The Deep Island Parser

Conceptually speaking, the deep island parser
(hence DIP) is very simple to define, but hard to
implement. A semantic island is made up by a set
of A/As which are dependent on a verb complex
(hence VCX). Arguments and Adjuncts may oc-
cur in any order and in any position: before or
after the verb complex, or be simply empty or
null. Their existence is determined by consti-
tuents surrounding the VCX. The VCX itself can
be composed of all main and minor constituents
occuring with the verb and contributing to cha-
racterize its semantics. We are here referring to:
proclitcs, negation and other adverbials, modals,
reconstruction verbs (lasciare/let, fare/make,
etc.), and all auxiliaries. Tensed morphology can
then appear on the main lexical verb or on the
auxiliaries/modals/reconstruction verbs.
The DIP is preceded by an augmented context-
free parser that works on top of a tagger and a
chunker. Chunks are labeled with usual gramma-
tical relations on the basis of syntactic subcate-
gorization contained in our verb lexicon of Ita-
lian counting some 17,000 entries. There are so-
me 270 different syntactic classes which diffe-
rentiates also the most common preposition asso-
ciated to oblique arguments. Position in the input
string is assumed at first as a valid criterion for
distinguishing SUBJects fro, OBJects. The se-
mantic parser will then be responsible for a rela-
beling of the output.
The DIP receives a list of Referring Expressions
and a list of VCX. Referring expressions are all
nominal heads accompanied by semantic class
information collected in a previous recursive run
through the list of the now lemmatized and
morphologically analyzed input sentence. It also
receives the output of the context-free parser.
The DIP searches for SUBJects at first and as-
sumes it is positioned before the verb and close
to it. In case there is none such chunk available
the search is widened if intermediate chunks are
detected: they can be Prepositional Phrases, Ad-
verbials or simply Parentheticals. If this search
fails, the DIP looks for OBJects close after the
verb then and again possibly separated by some
intermediate chunk. They will be relabeled as
Subjects. Conditions on the A/As boundaries are
formulated in these terms:
 - between current VCX and prospective argu-
ment there cannot be any other VCX

Additional constraints regard presence of relative
or complement clauses which are detected from
the output chunked structure.
The prospective argument is deleted from the list
of Referring Expressions and the same happens
with the VCX. The same applies for the OBJect,
OBJect1 and OBLique. When arguments are
completed, the parser searches recursively for
ADJuncts which are PPs, using the same bounda-
ry constraint formulation above.
Special provisions are given to copulative con-
structions which can often be reversed in Italian:
the predicate coming first and then the subject
NP. The choice is governed by looking at refer-
ring attributes, which include definiteness, quan-
tification, distinction between proper/common
noun. It assigns the most referring nominal to the
SUBJect and the less referring nominal to the
predicate. In this phase, whenever a SUBJect is
not found from available referring expressions, it
is created as little_pro and moprhological featu-
res are added from the ones belonging to the verb
complex. The Predicate-Argument Structure
(hence PAS) thus obtained, is then enriched by a
second part of the algorithm which adds empty
or null elements to untensed clauses.

3 The Classification Procedure

The classification and evaluation procedure is
carried out on constituents and their correspond-
ing semantics at propositional level in two steps.
The procedure is preceded by the creation of the
model which is made up of the following three
components:
- a dictionary of token trigrams, one for every
occurrence in a sentence with associated fre-
quency value and sentence id. We will use the
following sentence no. AC-01-R0364 as exam-
ple for the classification.

<sent>'AC-01-
R0364'<lik_scl>'1.666666667'</lik_scl><st_err>
'0.284267622'</st_err><text>Quando il diparti-
mento concedeva dei fondi lui spendevano tutti i
soldi in trasferte.</text></sent>

The list below represents the sequence of con-
stituents extracted from sentence reported above,
with the final punctuation mark added.

The triple below is the first one extracted from
the previous list.

tktr(1-[f,fs,f,sn,ibar,sq,sn,ibar,sn,sp,punto]-'AC-
01-R0364_1').2
tktr(1- (f-fs-sn)-'AC-01-R0364_1').3

- a list of sentence constituent types correspond-
ing to the training corpus made of an index, a list
of trigrams with their local frequency of occur-
rence, an evaluation and classification value as
derived from the training set: this is the list for
the same sentence.

scst('AC-01-R0364'-[1-
[f,fs,sn,ibar,sq,sn,ibar,sn,sp,punto],1- (f-fs-sn),1-
(fs-sn-ibar),1- (sn-ibar-sq),1- (ibar-sq-sn),1- (sq-
sn-ibar),1- (sn-ibar-sn),1- (ibar-sn-sp),1- (sn-sp-
punto)]-['1.666666667','0.284267622']).

- a dictionary of type constituent trigrams or
unique forms with frequency of occurrence in the
whole corpus. For instance the following triple
occurs 5 times in the training corpus:
tptr(5- (vcomp-savv-ibar)).

- a list of semantic parameters associated to each
sentence, where since semantics is computed at
propositional level, the list is constituted by a set
of parameters preceded by a lemmatized predi-
cate. Parameters considered are the following
ones: agreement (may take on three values: false,
true, null); negation (propositions – first slot -
but also predicates may be lexically negatively
marked! – second slot); speech act (8 different
types); factivity (two values).

semp('AC-01-R0364'-[true-concedere-statement-
factive-[pos,nil],false-spendere-statement-
factive-[pos,neg]]-
['1.666666667','0.284267622']).

Overall we collected from the training corpus
12309 token trigrams, 739 type trigrams, 2678
semantic feature sets. We then created the devel-
opment corpus, by extracting 20% of sentences
from the training corpus, which adds up to 414
sentences for the Complexity corpus and 252
sentences for the Acceptability corpus. The cor-
responding Development models were created by

2 In more detail the sequence of constituents is as follows:
[f-[fs-[fs-[Quando],f-[sn-[il dipartimento],ibar-[concedeva],
sq-[dei fondi]]], sn-[lui],ibar-[spendevano],sn-[tutti i sol-
di],sp-[in trasferte]]]. As can be noted, we eliminate func-
tional constituents like “fs” and “f” and keep only those
containing a semantic head. We also keep the initial symbol.
3	
 We use Italian constituent labels where F stands for S, SN
for NP etc. and Phrase is turned into Sintagma.

analysing the remaining sentences. We were then
able to match the content of two models each for
the two tasks: the new model of the reduced
Training corpus that we obtained by extracting
20% of sentences which we matched against the
corpus of the extracted sentences or DevSet. In
order to evaluate the output we decided to con-
sider as correct approximation a value whose
difference from the target value was lower than
1. It is important to notice that results are to be
referred to sentence level after splitting: this adds
3 more sentences to the Complexity DevSet
which turns the total amount from 413 to 416.
On the contrary, in the Acceptability DevSet the
system didn’t split any sentence. Here is the list
of additional sentences processed: CO-01-
R0317_2, CO-01-R0357_2, CO-01-R0637_2:
they are caused by presence of dots which are
interpreted by the parser as a possible sentence
split.
We report here below Precision and Recall for
the DevSet that we evaluated at first against the
Training Corpus Model for coverage issues and
then against the DevSet Corpus model. Results
we obtained are as follows:

Coverage of the DevSet by the Training Corpus
Model
- Acceptability
Total sentences processed 249 over 252 corre-
sponding to 98.8%
207 over 249 Likert Scale (83.13%)
203 over 249 Standard Error (81.52%)
- Complexity
Total sentences processed 412 over 416 corre-
sponding to 99.03%
398 over 416 Likert Scale (95.67%)
399 over 416 Standard Error (95.81%)

Results of the DevSet by the Development Cor-
pus Model
- Acceptability
Total sentences processed 250 over 252 corre-
sponding to 99.2%
151 over 252 Likert Scale (59.92%)
140 over 252 Standard Error (55.55%)
- Complexity
Total sentences processed 412 over 416 corre-
sponding to 99.03%
263 over 416 Likert Scale (63.62%)
255 over 416 Standard Error (61.29%)

First step in the classification and evaluation
procedure is the constituent trigram matching
step. In this step trigrams are computed for the

input text and are matched against the token tri-
grams dictionary. The matching should produce
a list of possible sentence types: we choose the
sentence which has more than half of the tri-
grams matched. The sentence type trigram list is
then used to check trigram sequences: here again
more than half of the trigrams should be related
in sequence. In case this process succeeds we
take the associated classification and the evalua-
tion stops. If the process fails, we search the tri-
gram database derived from VIT, which is made
of 273,000 (Delmonte et al., 2007) trigrams or-
ganized into four frequency related subclasses:
rare trigrams with frequency of occurrence in-
cluding all hapax, dis, trislegomena; frequent
trigrams with frequency of occurrence from 4 to
20; very frequent trigrams with frequency of oc-
currence higher than 20. According to their
placement, trigrams are regarded more or less
easy to accept vs complex in case their frequency
is rare.
VIT (Venice Italian Treebank) is a treebank con-
sisting of 320.000 words created by the Labora-
tory of Computational Linguistics of the De-
partment of Language Sciences of the University
of Venice. The VIT Corpus consists of 57.000
words of spoken text and of 273.000 words of
written text. Syntactic annotation was accompli-
shed through a sequence of semi-automatic ope-
rations followed by manual validation. The first
version of the Treebank was created in the years
1985-88 – manually parsing 40000 words of text
with a constituent structure only representation.
The resulting structure labels were collected and
were used to build a context-free parser for a
speech synthesizer (Delmonte R. and R. Dolci,
1991). The theoretical framework behind our
syntactic representation was X-bar theory. One
peculiarity of VIT is the intention to make it re-
presentative of the Italian linguistic syntactic and
semantic variety: we thus introduced texts from
five different genres – news, bureacratic genre,
political genre, scientific genre, literary genre.
This made the resulting structures a treebank
with a high coverage but very sparse.

4 The Evaluation Module

We assigned rewards and penalties according to
a scheme which was partly based on constituen-
cy and partly on semantics. In particular, we used
agreement, negation, factivity from semantic
processing and complex constituency structures
from trigram model and a smal set of heuristical-
ly determined rules. To check agreement we took

the main verb predicate and its morphology and
matched this information with the one available
on the lexically expressed subject. Here below
some examples of semantic information used for
agreement matching:

<sent>'AC-01-
R0364'<lik_scl>'1.666666667'</lik_scl><st_err>
'0.284267622'</st_err><text>
Quando il dipartimento concedeva dei fondi lui
spendevano tutti i soldi in
trasferte.</text></sent>

Sem = [concedere-statement-factive-[pos,
nil], spendere-statement-factive-[pos, neg]]
Agrs = [false]
Negs = [neg]

In addition, we used lexical representations in
order to verify the level of matching existing be-
tween two predicates. In particular we checked
syntactic classes and conceptual classes4 (Del-
monte R., 1989; 1990; 1995).
Here are some verb lexical representation in our
lexicon, where we list the root, the conjugation,
the syntactic class, the aspectual class, the con-
ceptual class, the list of arguments and their in-
herent semantic features preceded by constituent
type and semantic role. Here below the example
of “stonare”/clash

pv(ston,1,inerg,statv,exten,[np/subj1/theme_unaf
f/[-ani,+hum]]).

where “ston” = is the root, “1” = the conjugation
(first implies the morpheme “are” to be ad-
joined), “intr” = the syntactic type, intransitive or
unergative, “statv” = stative, the aspectual class,
“exten” = extensional, the conceptual class. The
list of possible arguments follows starting from

4 Syntactic lexical classes include the following:
tr=transitive; tr_cop=transitive+predicative argument;
tr_perc=transitive_perceptive; ditr(+preps)=ditransitive;
psych1=psychic 1; psych2=psychic 2; psych3=psychic 3;
inac=unaccusative; inerg=unergative; rifl=reflexive;
rifl_rec=reflexive reciprocal; rifl_in=reflexive inherent;
erg_rifl=ergative reflexive; imp=impersonal;
imp_atm=impersonal atmospheric; cop=copulative;
mod=modal; C_mov=movement verb + another class;
C_prop=propositional verb + another class;
Conceptual lexical classes include the following:
ask_poss,at_posit,coerc,dir,dir_difclt,dir_tow,divid,eval,ext
en,exten_neg,factv, go_against,hold,hyper, inform, ingest,
into_hole,let,manip,measu_maj,measu_min,ment_act,
not_exten,not_let,not_react,over,percpt, perf,posit, pos-
sess,process,propr,react,rep_contr,subj,touch,unit

the “subj1” = subject, which is a “np” Noun-
Phrase, and has “theme_unaff” = theme unaf-
fected as semantic role. Semantic features are “-
ani” = minus animate, “+hum” = plus human, i.e.
only humans and not animate being are selected.
In case a verb selects more argument types, the
entry is repeated each one containing a different
structural construction. This applies for instance
to “scoppi”/burst,explode,break out.

pv(scoppi,1,inac,statv,exten,[np/subj1/theme_un
aff/[-ani,+hum]]).
pv(scoppi,1,inac,statv,exten,[np/subj1/theme_un
aff/[+hum],pp/obl/theme/di/[+abst]]).
pv(scoppi,1,inac,statv,exten,[np/subj1/theme_un
aff/[+hum],vinf/vcomp/prop/a/[subj=subj1]]).

In the third entry, we have a quasi-idiomatic
form “scoppiare a piangere”/burst into tears,
where the infinitival has a subject bound to the
higher governing verb’s subject. This is done
according to principles expressed in LFG theory
(Bresnan, 1982; 2001).
Lack of agreement in lexical classes reduces the
score associated to the similarity match between
the two trigrams under evaluation for the current
sentence. Other scoring functions are associated
to speech act, grammatical agreement, pres-
ence/absence of negation at propositional/lexical
level; factivity; complex constituency. Overall
we have eight possible features.

Speech Act
Lexical classes:
 syntactic
 conceptual
Negation:
 lexical
 propositional
Agreement
Factivity
Complexity at constituent level
Table 1. Linguistic features used by ItVenses

Thus schematically we have:
Rewards:
0 no wrong agreements; 0 no negation; 0 no non-
factive; same conceptual lexical features; similar
syntactic lexical features; 0 no complex constitu-
ency structures
Else:
penalties (reducing acceptability vs increasing
complexity)

Similarity in syntactic lexical classes tends to
reduce the more detailed lexical classification
into one single label, as for instance the label
“transitive” will include: tr (transitive), tr_cop
(transitive+predicative argument), tr_perc (tran-
sitive_perceptive), ditr(+preps) (ditransitive).
As to constituency complexity we count all con-
stituent labels that are indicators of: sentential
complement represented by FAC (Italian for
SCOMP); subordinator for subordinate clause,
CP; complementizer or interrogative pronoun
represented by CP; relative clause, F2; coordi-
nate clause, FC. According to the quantity of one
or more of these constituent labels, we assign
penalties or rewards. The decision is determined
by heuristics but also by the length in number of
constituents. For instance, 2 CP + 1 FAC will be
computes as a penalty; 1 CP, 1 FAC, 1 F2 again
penalty, however length in terms of constituents
should be higher than 8. We also address specific
constituent sequences which indicate complex or
hard to understand structures as for instance the
sequence:

[…, fc,sn,vcomp,sn,punto]

which classifies some 20 sentences in the Ac-
ceptability test set, one of which is sentence n.
AC-OC-02-R0569:

“Ci dissero chi Maria aveva chiamato un uomo e
Marco visitato l'anziano signore.”

This sentence is ungrammatical due to presence
of a lexical Object NP in the extraction place of
the interrogative pronoun “chi”. However this
case of ungrammaticality is hard to detect solely
on the base of constituent sequences because the
NP containing “chi” is not lexically marked. On
the contrary, the final participial clause is easily
detectable.
The evaluation algorithm starts by searching tri-
grams collected in the current sentence analysis
and by trying to match them with the ones mem-
orized in the training set model. The search is
successful if one or more matches have been ob-
tained which have 3 or more trigrams. The fol-
lowing step is then collecting features as indicat-
ed in Table 1. from the syntactic and semantic
output of the parser. These features are matched
against the ones that are associated to each tri-
gram sequence collected in the previous step.
The matching algorithm receives a vector made
of six slots:

match(Strct,Pred,Agrs,Negs,Fact,Spacs)

where, “Strct” stands for constituent structure;
“Pred”, is the verbal predicate lemma; “Agrs”, is
a binary value (true/false) for subject-verb
agreement; “Negs” is a pair of binary values
(neg/nil) for negation at lexical and propositional
level; “Fact” is again a binary value (true/false)
for factivity at propositional level; “Spacs” is one
of the seven possible labels5 used to classify
speech act. For instance, in the case of sentence
no. 'AC-01-R0364' above, the following counts
are generated automatically:

Fact = ['AC-01-R0440_1'-factive, 'AC-01-
R0440_1'-factive]
Spacs = [statement, statement]
N = N1 = Va = 0 [negation1, negation2]
N2 = N3 = 2 [agreement] *penalty
Sum = Val = 4 [final score] *penalty

5 Results and Discussion

As said above, results are not successful. In par-
ticular, results for the Complexity Task are well
below the Baseline. Results for the Acceptability
Task are higher and in one case they almost dou-
ble the Baseline.

COMPL Task
RUN 1
Mean-Correlation: 0.312796825885, p value < 0.001
STD ERR-Correlation: 0.096751776, p value < 0.05
RUN 2
Mean-Correlation: 0.305504444563, p value < 0.001
STD ERR-Correlation: 0.0729839133, p value > 0.05

ACCEPT Task
RUN 1
Mean-Correlation: 0.441645891, p value < 0.001
STD ERR Correlation: 0.248478821, p value < 0.001
RUN 2
Mean-Correlation: 0.494713038815, p value < 0.001
STD ERR-Correlation: 0.405850132, p value < 0.001

As can be easily gathered, differences between
Run-1 and Run-2 are not particularly high in the
Complexity Task. Not so in the Acceptability
task where Run-2 exceeds Run-1 by 0.053
points. Run-2 in both tasks is characterized by a
different strategy determined by a policy of fea-
ture ablation. What we did, was trying to verify
whether the presence of each of the eight features

5	
 We use the following: statement, question, exclamation,
negated, unreal, opinionsubjective, conditional	

had an important impact on the final result and to
what extent. Eventually, we found out that the
use of lexical negation was not so relevant and so
we deleted it from the final count. And that was
the decision that determine the result for Run-2.
The different behaviour of the system in the two
tasks can be due to the length of the sentences
which in the Complexity task is much longer.
The system produces results for each proposition
and not for the sentence as a whole – we don’t
count relative and complement clauses as sepa-
rate propositions. When generating the final doc-
ument for the two runs we did not have a strategy
in deciding in many cases, which proposition we
had to choose as a representative of the whole
sentence. We decided we could not make an av-
erage between the two or three propositions so
we simply selected always the result obtained by
the first proposition. This choice applied to 51
sentences, 41 with two propositions and 10 with
three propositions. The Complexity text also suf-
fered from failure of the parser in three sentenc-
es. We also have to consider the presence of 62
results determined heuristically, i.e. the system
did not find the corresponding trigrams in the
training set, so it used the VIT database and gen-
erated the final statistics by a set of heuristics.
No such problems arose in the Acceptability
Task, where all sentences where constituted by a
single proposition. However, we had a higher
number of heuristically determined statistics, 86.
If we had the possibility to present more runs,
then we could have achieved better results in the
Complexity task.

6 Conclusion

We presented the results of our system for the
two tasks Complexity and Acceptability. The
system uses constituency-based trigrams associ-
ated to the semantics of each proposition. Evalu-
ation is based on presence/absence of agree-
ment/match between linguistic features, deter-
mined at a lexical, syntactic and semantic level.
Worst results obtained for the Complexity Task
may be due partly to the length of the sentences,
which required a specific strategy in choosing
the most relevant classification at propositional
level. We concentrated our work on the use of
constituent trigrams and did not consider the
possibility to use ngrams based on words or
lemmata which we had available from our deep
analysis. In the future, we intend to use the same
approach we produced for the other tasks of
EVALITA which are all based on automatically

generated fully supervised ngram models togeth-
er with the one presented here.

References
Basile, Valerio and Croce, Danilo and Di Maro,

Maria, and Passaro, Lucia C., 2020.
EVALITA 2020: Overview of the 7th Evalua-
tion Campaign of Natural Language Pro-
cessing and Speech Tools for Italian, in Pro-
ceedings of Seventh Evaluation Campaign of
Natural Language Processing and Speech
Tools for Italian. Final Workshop (EVALITA
2020), CEUR.org.

Bresnan Joan (ed.), 1982. The Mental Represen-
tation of Grammatical Relations, The MIT
Press, Cambridge MA.

Bresnan Joan, 2001. Lexical function syntax.
Oxford, Blackwell Publishers.

Delmonte, R., A. Bristot, S. Tonelli, 2007. VIT -
Venice Italian Treebank: Syntactic and Quan-
titative Features, in K.De Smedt, Jan Hajic,
Sandra Kübler(Eds.), Proc. Sixth International
Workshop on TLT, Nealt Proc. Series Vol.1,
43-54.

Delmonte R., 1995. Lexical Representations:
Syntax-Semantics interface and World
Knowledge, in Notiziario AIIA (Associazione
Italiana di Intelligenza Artificiale), Roma,
pp.11-16.

Delmonte R., 1990. Semantic Parsing with an
LFG-based Lexicon and Conceptual Repre-
sentations, Computers & the Humanities, 5-6,
461-488.

Delmonte R., R.Dolci, 1991. Computing Lin-
guistic Knowledge for a Text-To-Speech Sys-
tem With PROSO, in Proc. EUROSPEECH
’91 – Second European Conference on Speech
Communication and Technology, Genova,
ISCA, Archive, pp. 1291-1294.downloadable
at https://www.isca-speech.org/archive/ eu-
rospeech_1991/e91_1291.html

Delmonte R., 2014. ITGETARUNS A Linguistic
Rule-Based System for Pragmatic Text Pro-
cessing, Proceedings of Fourth International
Workshop EVALITA 2014, Pisa, Edizioni
PLUS, Pisa University Press, vol. 2, pp. 64-69.

Ohana, B. and B. Tierney and S.J. Delany, 2016,
Sentiment Classification Using Negation as a
Proxy for Negative Sentiment, in Proceedings
of 29th FLAIRS Conference, AAAI, 316-321.

Polanyi, Livia and Zaenen, Annie 2006. “Con-
textual valence shifters”. In Janyce Wiebe, ed-
itor, Computing Attitude and Affect in Text:
Theory and Applications. Springer, Dordrecht,
1–10.

Stingo M., & R. Delmonte, 2016. Annotating
Satire in Italian Political Commentaries with
Appraisal Theory, IN Larry Birnbaum, Octa-
vian Popescu and Carlo Strapparava (eds.),
Natural Language Processing meets Journal-
ism - Proceedings of the Workshop, NLPMJ-
2016, 74-79.

