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Abstract

English. This document describes our
participation in the Hate Speech Detection
task at Evalita 2020. Our system is based
on deep learning techniques, specifically
RNNs and attention mechanism, mixed
with transformer representations and lin-
guistic features. In the training process
a multi task learning was used to in-
crease the system effectiveness. The re-
sults show how some of the selected fea-
tures were not a good combination within
the model. Nevertheless, the generaliza-
tion level achieved yield encourage re-
sults.

1 Introduction

Modern societies found easy and interesting ways
for sharing information via Social Media. Users
discover freedom to express themselves through
online communication. Even if the ability to freely
express oneself is a human right, some users take
this opportunity to spread hateful content. A dan-
gerous and hurtful potential arises with this kind
of information. Recognizing automatically such
content is an interesting topic for researchers.

Creative methods have been proposed to tackle
the fascinating task of recognizing hate in texts
(De la Pena Sarracén et al., 2018; Gambäck and
Sikdar, 2017). Some of those works face the
problem using feature extraction (Schmidt and
Wiegand, 2017) and classification algorithms like
SVM (Santucci et al., 2018). In the last years,
Deep Learning approaches have become one of
the most successful research areas in Natural Lan-
guage Processing (NLP). There are exciting inves-

Copyright© 2020 for this paper by its authors. Use per-
mitted under Creative Commons License Attribution 4.0 In-
ternational (CC BY 4.0).

tigations about this topic, such as (Cimino et al.,
2018), involving LSTM (Liu and Guo, 2019) and
transformers (Vaswani et al., 2017) that gain atten-
tion in NLP community due to their results.

We propose a model based on multiple repre-
sentations learned by means of deep learning tech-
niques and linguistic knowledge. Particularly a
Long Short Term Memory architecture mixed with
linguistic features and language model representa-
tions given by a special kind of transformer model,
BERT.

The paper is organized as follows. The Sec-
tion 2 introduces a brief description of HaSpeeDe
Task. Our hate detection system is presented
in Section 3. The experiments and results
are discussed in Section 4. Finally, in Sec-
tion 5 the conclusions and future directions
are given. The code of this work is avail-
able on GitHub: https://github.com/
mjason98/evalita20_hate

2 HaSpeeDe2 Task

Hate speech and stereotypes recognition on so-
cial media have become an attractive research area
from the computational point of view. In the sec-
ond edition of HaSpeeDe (Sanguinetti et al., 2020)
at Evalita 2020 (Basile et al., 2020), the organiz-
ers proposed to address three subtasks. The main
subtask is the subtask A, which aims at determin-
ing the presence or absence of hateful content in a
text. The dataset is composed by 6839 short texts,
2766 labeled as hate speech and 4076 as not hate
speech. In this work we focused only on subtask
A. The subtask B consists of a binary classification
problem oriented to stereotypes’ detection. The
last subtask C is a sequence labeling task aims at
recognizing Nominal Utterances in hateful tweets.

3 Our Proposal

We dealt with hate detection task as a text classi-
fication problem to classify “hateful” or “no hate-



ful” categories. We train a deep learning model
based on attention mechanism and Recurrent Neu-
ral Networks, specifically a Bidirectional Long
Short Term Memory (Bi-LSTM) (Hochreiter and
Schmidhuber, 1997) mixed with linguistic fea-
tures and transformers representations by means
of an interpretable multi-source fusion component
(Karimi et al., 2018).

In Section 3.1 and Section 3.2 we describe the
linguistic features and the transformer representa-
tion used in this work. The Section 3.3 presents
the preprocessing phase. Finally, the neural net-
work model and the feature ensemble are de-
scribed in Section 3.4.

3.1 Linguistic Feature

To build the hate detection model, we start by ex-
tracting several sets of linguistic features:

WordNet Features: We count the number
of verbs, adverbs, nouns and adjectives. Also,
for every word, we calculated the average of its
similarity with respect to the others using the
similarity path function provided by the word-
net2 corpus. Furthermore, we consider the degree
of lexical ambiguity by counting the number of
synsets of each word within the text.

Hurt and Sentiment content: HurtLex
(Bassignana et al., 2018) is a lexicon of offen-
sive, aggressive, and hateful words in over 50 lan-
guages. The words according to the 17 categories
offered by the lexicon are counted and added as
linguistic features jointly with polarity and seman-
tic values obtained from SenticNet (Cambria et al.,
2018) corpus.

Information Gain: Information gain (Lewis,
1992) had been a good feature selection measure
for text categorization. It takes into account the
presence of the term in a category as well as its
absence and can be defined by:

IG(tk, Ci) =
∑
C

∑
t

p(t, C) · log2
p(t, C)

p(t)·p(C)

where C ∈ {Ci, C̄i} and t ∈ {tk, t̄k}. In this
formula, probabilities are interpreted on an event
space of documents, where p(t̄k, Ci) is the proba-
bility that, for a random document d, term tk does
not occur in d who belongs to category Ci. In our
case, categories were two: hateful and no hateful,
and the term is the word’s lemma.

2The wordnet came from the python library nltk

To create the information gain feature (IgF), we
calculated the IG for every word and the highest
ones are chosen3. Then, the occurrence of those
selected words in the text are counted.

3.2 Italian BERT
Finally, we use a pre-trained BERT4 to accom-
plish the calculation of a deep representation of
the text. One of the most widely used auto-
encoding pre-trained Language Models (PLMs) is
BERT (Devlin et al., 2018). BERT is trained us-
ing the masked language modeling task that ran-
domly masks some tokens in a text sequence, and
then independently recovers the masked tokens by
conditioning on the encoding vectors obtained by
a bidirectional Transformer.

Inside BERT, the information is passed forward
crosswise transformer layers. In this work, we
used a specific output from one of those layers,
this operation can be expressed by:

h0 = Hl0(texttok)

hi = Hli(hi−1)

hn = Hln(hn−1)

where texttok is the text after its tokenization5,
hi is the output of the ith transformer layer(Hli)
called hidden state and n is the total transformer
layers in BERT. Then, for an specific i, from the
tensor of order 2 hi it is computed the vector fbert,
as a deep representation of the initial text who will
act as PLM feature.

v =
∑
k=0

hi[k, :] fbert =
v

||v||

3.3 Preprocessing
In the preprocessing step, firstly stopwords were
removed . Then, the hashtags composed of many
words are split (e.g: #NessunDorma becomes #
nessun dorma). We use a regular expression6 al-
gorithm to archive this step.

Secondly, using the FreeLing7 tool we obtain
for each word it lemma, and non alphanumeric
characters are removed. Finally, the remaining
words are represented as vectors using a pre-
trained word embedding generated by Word2Vec
model (Mikolov et al., 2013).

3We selected the top 50 words with highest IG value.
4https://huggingface.co/dbmdz/bert-base-italian-cased
5The text is represented as a vector of integers using the

tokenizer function in BERT Model
6The automaton was created using the re library from

python and the words from an italian corpus.
7http://nlp.lsi.upc.edu/freeling/index.php



3.4 The Deep Ensemble Model
The standard LSTM receives sequentially at each
time step a vector xt and produces a hidden state
ht. Each hidden state ht is calculated as follow:

it = σ(W (i)xt + U (i)ht−1 + b(i))

ft = σ(W (f)xt + U (f)ht−1 + b(f))

ot = σ(W (o)xt + U (o)ht−1 + b(o))

ut = σ(W (u)xt + U (u)ht−1 + b(u))

ct = i+ t⊕+ft ⊕ ct−1

ht = ot ⊕ tanh(ct) (1)

Where all W (∗) , U (∗) and b(∗) are parameters
to be learned during training. Function σ is the
sigmoid function and ⊗ stands for element-wise
multiplication.

Bidirectional LSTM, on the other hand, makes
the same operations as standard LSTM but,
processes the incoming text in a left-to-right and
a right-to-left order in parallel. Thus, it output
become ĥt = [

−→
ht ,
←−
ht ] for the two directions.

By adding an attention mechanism, we allow
the model to decide which part of the sequence
“attends to”. First, lets define the softmax function
π(v) for a vector v = [v0, · · · , vn−1] as:

π(v) =
ev∑
i=0 e

vi

Then, let I ∈ RN×L be the matrix of input vec-
tors, where L the size of then and N the length of
the given sequence. We define the attention layer
(AttLSTM), as a regular LSTM layer like (1) with
extra operations described as follow:

ak,t = π(Wk · hTt−1 + bk) αk,t = aTk,t · I
βt = [α0,t, · · · , αS−1,t] xt = Wa · βi + ba

(2)

Here k ∈ [0, S − 1] represents the number of
attention’s heads, Wk ∈ RN×M where M is the
size of the hidden state vector ht, Wa ∈ RM×SM ,
ba and bk are learnable parameters. The (∗)T is
the transpose operation and the output of the layer
is O = [h0, ..., ht, ..., hN ], a concatenation of the
hidden states produced by the AttLSTM at each
time step.

As mentioned before, we propose a feature en-
semble by using an interpretable multi-source fu-
sion component (IMF). The IMF aims to combine

features from different sources. A naive way of
doing this is concatenating the vector representa-
tions into a single vector. This scheme considers
all sources equally, but one source may yield a bet-
ter result than others. With IMF we propose to
consider the contribution of every source of fea-
ture via an attention mechanism. The IMF can be
expressed by:

ri = tanh(Wpifi + bpi)

where ri represents a projection of fi, the ith fea-
ture vector passed to IMF ensuring that every ri
have the same size. In this step, all the Wpi , bpi ,
Wa and ba are parameters to be learned during
training, then:

ai = Wari + ba αi = π(ai)

βi = αiri z =
∑
k=0

βk (3)

where αi represents the importance of ri to the
final calculation of z, the IMF outcome.

To increase the learning power of our system,
we used a multitask learning (Caruana, 1997) in
which we predict the polarity of tweets in parallel
with the classes of the hate speech detection sub-
task. This approach have been developed before
(Cimino et al., 2018) in HaSpeede at Evalita 2018
(Bosco et al., 2018). The tweets used to accom-
plish the multitask learning are extracted from the
Sentipolc-2016 (Barbieri et al., 2016) challenge.

Finally we present the composition of the previ-
ous layers and features to create our deep ensem-
ble model:

E = [w0, w1, · · · , wN−1]

ob1 = BiLSTM(E) (4)

where E represents the vector representation of
the text, see Section 3.3. Equation (4) is the first
block of our model, and the second block can be
described as follow:

A = AttLSTM(ob1)

mi = max
j=0,··· ,N−1

Aj,i

ob2 = [m0, · · · ,mM−1] (5)

The vector ob2 is the return of a MaxPool layer



over the A vector sequence, then:

F = [ob2, fbert, fwn, fhs, fig]

ob3 = IMF (F )

ŷ = σ(Whob3 + bh)

ŷf = σ(Wfob3 + bf ) (6)

The third block is described in (6) where Wh,
Wf , bf and bh are learnable parameters and
ŷ, ŷf ∈ R. The vectors fbert, fwn, fhs and fig cor-
respond to the BERT, WordNet, Hurt-Sentiment
and Information Gain features respectively. The
prediction of the tweets polarity is determined by
the ŷf value and the hate value trough ŷ.

The overall weighted loss of the model is cal-
culated by cross-entropy, with higher importance
value for the hate speech predictions that polarity
predictions. The overall loss is calculated accord-
ing to the following formula.

L1 = −
∑

yi log(ŷi) L2 = −
∑

yfi log(ŷfi)

loss = λL1 + (1− λ)L2 (0 ≤ λ ≤ 1) (7)

Here L1 and L2 are the cross-entropy loss of
hate predictions and sentiment polarity predictions
respectively. The value λ is the main task impor-
tance weight. The values yi and yfi represents the
ground true hate classification and polarity clas-
sification respectively. Then, the final loss is ob-
tained as a convex sum of L1 and L2.

4 Experiments and Results

In this section we show the results of our proposed
method in subtask A and discuss about them. The
organizers allow a maximum of two submissions
for every subtask in the challenge. We named our
team UO.

Experiments where conducted in two main di-
rections: Firstly, to investigate the impact of the
IMF fusion strategy and secondly, to evaluate the
impact of each proposed single-modal representa-
tion into our proposal. The results of our experi-
ments are presented in Table 1 and Table 2.

In those tables, the column named heads is
the number of attention headers in the Att-LSTM
layer. If this space is empty, this layer was not
used. Columns bert and ig correspond to the
presence or not of BERT and IG representations.
The column wn-hs express the presence of Hurt-
Sentiment and WordNet based representations. If
a cell has a cross, the representation associated

to the column were not used in the corresponding
run. We used a 10% of the training dataset for vali-
dation. We report the accuracy measure computed
on this validation data.

Both Tables show that the presence of BERT in-
crease the performance, also almost all the runs
have higher values with IMF in contrast to not us-
ing it. Increasing the number of attention heads
without IMF increase the results, but the opposite
occurs in the presence of the IMF.

Name heads bert ig wn-hs acc
run1 2 0.764386
run2 - × × 0.742690
run3 3 0.767544
run4 2 × 0.713450
run5 2 × 0.763158
run6 - 0.757310
run7 - × 0.724152
run8 - × 0.755848

Table 1: Experiment results without IMF.

Name heads bert ig wn-hs acc
run1 2 0.795848
run2 - × × 0.779101
run3 3 0.764620
run4 2 × 0.720760
run5 2 × 0.774854
run6 - 0.767544
run7 - × 0.719298
run8 - × 0.777778

Table 2: Experiment results with IMF.

The pretrained embedding have a size of 300,
the number of neurons in the Bi-LSTM and in the
AttLSTM was 128. The λ value was equal to 0.75
and the dropout (Srivastava et al., 2014) after the
embedding layer was 0.3. The optimizer algorithm
to train the whole model was Adam (Kingma and
Ba, 2015), with a learning rate of 0.01.

The bold models in Table 2 were chosen as final
submission for the subtask. The run1 uses the at-
tention layer proposed in Section 3.2 and consider
all proposed representations. The run2 does not
use attention mechanism and handcraft features,
using only the BERT text representation and the
rest of the architecture.

The Table 3 shows the official results of our sys-
tem. The evaluation was performed on two distinct



corpora: one conformed by tweets and the other by
news headlines.

Runs macro-F
UO:tweets run1 0.6878
UO:tweets run2 0.7214
BEST RATED:tweets 0.8088
UO:news run1 0.6657
UO:news run2 0.7314
BEST RATED:news 0.7744

Table 3: Official results.

These results show that between our two mod-
els, the simple one get better results. The simplic-
ity is not a condition for a better performance us-
ing deep learning. These results also express that
some linguistic features decrease the effectiveness
of the model, but the similarity between the results
in the tweets and news evaluation sets suggest that
the system is able to generalize with a good per-
formance.

5 Conclusions and Future Work

In this paper we presented an Ensemble Model for
the task Hate Speech Detection (HaSpeeDe2) sub-
task A at Evalita 2020. Our proposal combines lin-
guistic features and RNNs with transformers rep-
resentations using an IMF. In the training phase,
we used a multi-task learning approaches to rec-
ognize hate speech and polarity simultaneously.

The achieved results show that the ability of this
ensemble to generalize the detection of hate con-
tent in different text genres. Nevertheless, some
handcraft features decrements its results. Moti-
vated by this, we plan to explore better features se-
lection, other attention mechanisms and multitask
learning techniques to improve the performance.
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Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In Proceedings of the first workshop on abu-
sive language online, pages 85–90.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Hamid Karimi, Proteek Roy, Sari Saba-Sadiya, and Jil-
iang Tang. 2018. Multi-source multi-class fake
news detection. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1546–1557.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Yoshua Ben-
gio and Yann LeCun, editors, 3rd International Con-
ference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

David D Lewis. 1992. An evaluation of phrasal
and clustered representations on a text categoriza-
tion task. In Proceedings of the 15th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 37–50.



Gang Liu and Jiabao Guo. 2019. Bidirectional lstm
with attention mechanism and convolutional layer
for text classification. Neurocomputing, 337:325–
338.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Christopher J. C. Burges, Léon Bot-
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