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Abstract

The Hate Speech Detection (HaSpeeDe 2)
task is the second edition of a shared task
on the detection of hateful content in Ital-
ian Twitter messages. HaSpeeDe 2 is com-
posed of a Main task (hate speech de-
tection) and two Pilot tasks, (stereotype
and nominal utterance detection). Systems
were challenged along two dimensions: (i)
time, with test data coming from a differ-
ent time period than the training data, and
(i) domain, with test data coming from
the news domain (i.e., news headlines).
Overall, 14 teams participated in the Main
task, the best systems achieved a macro
F1-score of 0.8088 and 0.7744 on the in-
domain in the out-of-domain test sets, re-
spectively; 6 teams submitted their results
for Pilot task 1 (stereotype detection), the
best systems achieved a macro F1-score of
0.7719 and 0.7203 on in-domain and out-
of-domain test sets. We did not receive any
submission for Pilot task 2.

1 Introduction and Motivations

From a NLP perspective, much attention has been
paid to the automatic detection of Hate Speech
(HS) and related phenomena (e.g., offensive or
abusive language among others) and behaviors
(e.g., harassment and cyberbullying). This has led
to the recent proliferation of contributions on this
topic (Nobata et al., 2016; Waseem et al., 2017;
Fortuna et al., 2019), corpora and lexica!, ded-
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"More details and an overview of available HS resources
have been recently presented in Poletto et al. (2020).

icated workshops?, and shared tasks within na-
tional® and international* evaluation campaigns.

As for Italian, the first edition of HaSpeeDe
(Bosco et al., 2018), a task specifically focused
on HS detection, was proposed at EVALITA
2018 (Caselli et al., 2018). The task consisted of
the binary classification (HS vs not-HS) of texts
from Twitter and Facebook. For each social me-
dia platform, training and test data were provided.
Furthermore, two cross-platform sub-tasks were
introduced to test the systems’ ability to generalize
across platforms.

The ultimate goal of HaSpeeDe 2 at EVALITA
2020 (Basile et al., 2020) is to take a step further
in state-of-the-art HS detection for Italian. By do-
ing this, we also intend to explore other side phe-
nomena and see the extent to which they can be
automatically distinguished from HS.

We propose a single training set made of tweets,
but two separate test sets within two different do-
mains: tweets and news headlines. While social
media are still one of the main channels used to
spread hateful content online (Alkiviadou, 2019;
Wodak, 2018), an important role in this respect is
also played by traditional media, and newspapers
in particular.

Furthermore, we chose to include another HS-
related phenomenon, namely the presence of
stereotypes referring to one of the targets identi-
fied within our dataset (i.e., muslims, Roma and
immigrants). With the term stereotype we mean
any explicit or implicit reference to typical beliefs
and attitudes about a given target (Sanguinetti et
al., 2018). An error analysis of the main systems
on the HaSpeeDe 2018 dataset itself (Francesconi

More detailed informations in: https://www.
workshopononlineabuse.com/

SHASOC (Mandl et al., 2019), Poleval (Ptaszynski et al.,
2019) or VLSD (Vu et al., 2019).

“Hateval task at Semeval 2019 (Basile et al., 2019).



et al., 2019) showed that the occurrence of these
elements constitutes a common source of error in
HS identification.

Finally, it has been observed that in social media
and newspapers’ headlines, the most hateful parts
are often verbless sentences or a verbless frag-
ments, also known as Nominal Utterances (NUs)
(Comandini et al., 2018). The relevant presence of
NUs has been investigated in the POP-HS-IT cor-
pus (Comandini and Patti, 2019). In order to have
a better understanding of the syntactic strategies
used in HS, we include the recognition of NUs in
hateful tweets and news headlines.

2 Task Description

HaSpeeDe 23 consists of a Main task and two Pilot
tasks and is based on two datasets, one containing
messages from a social media platform, namely
Twitter, and the other one news headlines. The
three tasks are shortly described as follows:

e Task A - Hate Speech Detection (Main
Task): binary classification task aimed at de-
termining the presence or the absence of hate-
ful content in the text towards a given target
(among immigrants, Muslims and Roma)

e Task B - Stereotype Detection (Pilot Task
1): binary classification task aimed at de-
termining the presence or the absence of a

stereotype towards the same targets as Task
A

* Task C - Identification of Nominal Utter-
ances (Pilot Task 2): sequence labeling task
aimed at recognizing NUs in data previously
labeled as hateful.

This edition of the task presents several dis-
tinguishing features with respect to the first one.
Besides including new and more-richly annotated
data, news headlines were introduced as cross-
domain test data. Furthermore, two additional
tasks are proposed. Finally, the Twitter test set in-
tentionally contains tweets published in a different
time frame than those in the training set to verify
the systems’ ability to detect HS forms indepen-
dently of biases. These biases result from context-
related features, such as events — regarding one of
our HS targets — that can be controversial or be
subject to heated and polarized debates.

>Task repository:

https://github.com/msang/haspeede/tree/
master/2020.

3 Datasets and Formats

In this section we describe the datasets and for-
mats used in the three tasks.

3.1 Twitter Dataset

Task A: The Twitter portion of the data of
HaSpeeDe 2018 was included in the training set
(4,000 tweets posted from October 2016 to April
2017). Moreover, new Twitter data were included
for this competition, a subset of the data gath-
ered for the Italian hate speech monitoring project
“Contro I’Odio” (Capozzi et al., 2019). The data
were retrieved using the Twitter Stream API and
filtered using the set of keywords described in Po-
letto et al. (2017). The newly annotated tweets
were posted between September 2018 and May
2019 and were annotated by Figure Eight (now
Appen) contributors for hate speech and by the
task organizers for the stereotype category. In par-
ticular, only data posted between January and May
2019 were included in the test set.

Task B: The HaSpeeDe Twitter corpus — used
in the first edition of the task — was already anno-
tated for stereotype since it was part of the Italian
Hate Speech corpus described in Sanguinetti et al.
(2018). We then used the same guidelines to en-
rich the new data from “Contro I’Odio” with this
annotation layer. The annotation was carried out
by the task organizers.

Task C: The HaSpeeDe Twitter corpus was also
annotated for the presence of Nominal Utterances
(NUs) within a side project (Comandini and Patti,
2019). We used an updated version of its guide-
lines (available in the task repository) to enrich
the new hateful data introduced in the campaign.
Similarly to the stereotype level, the annotation of
NUs was carried out by the task organizers specif-
ically for this task’s purposes.

3.2 News Dataset

Task A: For task A a new test corpus com-
posed of newspapers’ headlines about immigrants
was made available. The data were retrieved be-
tween October 2017 and February 2018 from on-
line newspapers (La Stampa, La Repubblica, 1l
Giornale, Liberoquotidiano) and annotated within
the context of a Master’s degree thesis discussed in
2018 at the Department of Foreign Languages at
the University of Turin. Data annotation includes



the same categories annotated in the Twitter cor-
pus.

Task B: The News corpus also includes stereo-
type annotation, performed according to the same
guidelines used for developing the Twitter corpus.

Task C: Similarly to the Twitter dataset, the
third annotation level was added in the News cor-
pus from scratch and specifically for the present
task.

Tables 1, 2 and 3 show the data distribution for
each task.

TASK A | HS | NOTHS | TOT.
Train | 2766 | 4073 | 6839
Test Tweets | 622 | 641 | 1263
Test News | 181 | 319 | 500

Table 1: Distribution of Hate Speech labels.

TASK B | STER. | NOT STER. | TOT.
Train | 3042 | 3797 | 6839
Test Tweets | 569 | 694 | 1263
TestNews | 175 | 325 | 500

Table 2: Distribution of Stereotype labels.

TAsSK C | w/NUs | w/oNUs | TOT.
Train | 1565 | 1201 | 2766
Test Tweets | 379 | 243 | 622
Test News | 151 | 30 | 181

Table 3: Distribution of Nominal Utterances.

The whole dataset consists of 8,012 tweets and
500 news headlines for Task A and B, and 3,388
tweets and 181 news (i.e., the sub-set with hateful
data only) for Task C.

In Task A and B, HS and stereotype represent
the 41.8% and 44.6%, respectively, of the Twit-
ter dataset. In contrast, in the News dataset, the
portion of hateful content and stereotype lowers to
36% and 35%.

Table 3 shows statistics about the total number of
texts with or without NUs in Task C. The percent-
age of hateful tweets featuring at least one NU is
57.4%; the percentage of news headlines having at
least one NU is 83.4%. This distribution is in line
with the one found in Comandini and Patti (2019).

3.3 Formats

Task A and B: For both tasks A and B data are
provided in a tab-separated values (TSV) file in-
cluding ID, text, HS and stereotype class (0 or 1).
Mentions and URLs were replaced with Quser
and URL placeholders. Table 4 shows some anno-
tation examples.

Task C: The dataset provided for Task C was an-
notated using WebAnno and converted into a IOB
(Inside-Outside-Beginning) format. The resulting
IOB2 alphabet consists of [-NU-CGA, O and B-
NU-CGA.

The annotation includes the ID, followed by an hy-
phen to mark the token number, the token, and the
IOB2 annotation of the NUs.

Below an example taken from the training set.

#Text=E UNA PROVOCAZIONE...ORA BASTA.. NES-
SUNO SBARCHI IN #ITALIA®

9602-23 E o)
9602-24 UNA 0
9602-25 PROVOCAZIONE O
9602-26 0
9602-27 0
9602-28 . 0
9602-29 ORA B-NU-CGA
9602-30 BASTA I-NU-CGA
9602-31 [-NU-CGA
9602-32 . I-NU-CGA
9602-33 NESSUNO 0
9602-34 SBARCHI 0)
9602-35 IN 0
9602-36  # 0
9602-37 ITALIA 0

To prevent participants from cheating, the released
test set for Task C also contains non-hateful mes-
sages. However, the evaluation of the systems is
conducted only on the hateful messages since we
are interested in investigating the relationship be-
tween these two phenomena.

4 Evaluation

For each task, participants were allowed to submit
up to 2 runs. A separate official ranking was pro-
vided, and the evaluation was performed accord-
ing to the standard metrics, i.e, Precision, Recall
and F-score.

For Task A and Task B, the scores were computed
for each class separately, and finally the F-score
was macro-averaged to get the overall results.

%IT°S A PROVOCATION.. THAT’S ENOUGH...NO
LANDINGS IN #ITALY”



id

text

| hs | ster.

87837

Via tutti i campi Rom e disinfettare per bene il lerciume che si lasciano dietro.
Mai piit campi Rom in Italia NO NO E NO

(“Away all the Roma camps and clean the filth they leave behind.

No more Roma camps in Italy NO NO AND NO”)

1

1

92547

Vanno affondate. Hanno rotto i c.....i

Aquarius vuol dettare ancora legge: carica migranti e rifiuta gli ordini libici

(“They must be sunk. We’ve had enough

Aquarius still wants to lay down the law: it brings migrants on board and refuses Lybian orders”)

94147

Istat conferma: migranti vengono in Italia a farsi mantenere
(“Istat confirms: migrants come to Italy to sponge off (us)”)

10707V

Sea Watch, Finanza sequestra la nave: sbarcano i migranti

(“Sea Watch, Custom Corps confiscate the ship: migrants get off”)

Table 4: Examples from the datasets for Task A and B. 7" and v superscripts indicate, respectively,
whether the message is from the Twitter or News dataset.

For Task C, token-wise scores were computed,
and a NU was considered correct only in case of
exact match, i.e., if all tokens that compose it were
correctly identified.

Different baseline systems were built according
to the task type:

» For Task A and B, besides a typical classi-
fier based on the most frequent class (Base-
line_MFC in Tables 5-8), a Linear SVM with
TF-IDF of unigrams and 2-5 char-grams was
used (Baseline_SVC).

* For Task C, the baseline replicates the one
presented for the COSMIANU corpus (Co-
mandini et al., 2018), which identifies as cor-
rect in the test the NUs that appear in the
training set (memory-based approach); base-
line results in Table 9.

5 Task Overview: Participation and
Results

5.1 Participants

A total amount of 14 teams participated in the
Main task on HS detection, 6 teams also submit-
ted their results for the Pilot task 1 (i.e. Task B)
on stereotype detection, while we did not receive
any submission for the Pilot task 2 (i.e. Task C)
on NUs identification. Except for one case, all
teams submitted 2 runs for their tasks. Further-
more, 4 teams used the same systems to partici-
pate in other (and partly related) tasks within the
EVALITA 2020 campaign: YNU_OXZ and Jig-
saw participated in the task on Automatic Misog-
yny Identification (AMI) (Fersini et al., 2020),
while TextWiller and Venses also participated in

the task on Stance Detection in Italian Tweets
(SardiStance) (Cignarella et al., 2020). It is worth
pointing out that in this second edition we regis-
tered a higher participation of non-Italian and non-
academic teams, and that HaSpeeDe 2 has been
one of the most participated EVALITA 2020 tasks.

5.2 Systems Overview

Approaches The participating models are char-
acterized by different architectures that exploit
principally BERT-based models and linguistic fea-
tures. Transformers are a popular choice in this
edition. Jigsaw (Lees et al., 2020), Svandiela
(Klaus et al., 2020), DH-FBK (Leonardelli et al.,
2020), TheNorth (Lavergne et al., 2020) fine-
tuned BERT, AIBERTo’ and UmBERTo® lan-
guage models for both runs. YNU_OXZ (Ou
and Li, 2020) exploited the pre-trained XLM-
RoBERTa? multi-language model as input of
Neural Networks architecture.  Fontana-Unipi
(Fontana and Attardi, 2020) developed a model
that is an ensemble of fixed number of instances
of two principal transformers (AIBERTo and DB-
MDZ!%) and a combination of DBMDZ input and
a dense layer. The DBMDZ is used also by
By1510 (Deng et al., 2020) in a transfer learning
approach. UO team (Rodriguez Cisnero and Or-
tega Bueno, 2020), on the other hand, used a Bi-
LSTM with the addition of linguistic features in

"https://github.com/marcopoli/
A1BERTo-it

$https://github.com/
musixmatchresearch/umberto

*https://huggingface.co/transformers/
model_doc/xlmroberta.html

Yhttps://huggingface.co/dbmdz/
bert-base-italian—-uncased



the first run, while using the pre-trained DBMDZ
model in the second one. CHILab (Gambino and
Pirrone, 2020) experimented transformer encoders
in the first run and depth-wise Separable Convo-
lution techniques in the second one. Moreover,
some teams explored classical machine learning
approaches such as No Place For Hate Speech (dos
S. R. da Silva and T. Roman, 2020), TextWiller
(Ferraccioli et al., 2020), UR_NLP (Hoffmann and
Kruschwitz, 2020) and Montanti (Bisconti and
Montagnani, 2020). Finally, Venses (Delmonte,
2020), based on the parser for Italian ItGetaruns,
applied six different rule-based classifiers.

Features and Lexical Resources Various fea-
tures are tested and explored by participants.
Morphosyntactic features are exploited by CHI-
Lab, using Part-of-Speech tags as additional in-
put. To adapt the POS tagging model provided by
Python’s spaCy library to social media language,
they added emoticons, emojis, hashtags and URLs
to vocabulary. In addition, to preprocess the texts,
they used sentiment lexicon for replacing emoti-
cons with appropriate labels about the expressed
sentiment. Semantic and lexical features are ex-
ploited by Venses and UO teams. In particular,
UO team used WordNet to catch lexical ambigu-
ity, syntactic patterns and similarity among words;
calculated information gain to capture the most
relevant words; used lexicons such as HurtLex
(Bassignana et al., 2018) and SenticNet!! to fea-
ture words with hateful categories and sentiment
information. Finally, different types of represen-
tation of tweets are tested by Montanti: TF-IDF,
DistilBert!? and GloVe (Pennington et al., 2014)
vectors as well as their combination.

Additional data Some teams preferred to use
additional data to improve the knowledge of their
classifiers. To extend the provided training set,
YNU_OXZ exploited Facebook data provided in
the first edition of HaSpeeDe and DH-FBK used
a set of Italian tweets that covers similar topics.
Jigsaw, for one of the submissions, used addi-
tional user-generated comments to fine-tune their
model. CHILab used additional tweets taken from
TWITA 2018'3 by means of some keywords ex-
tracted from the provided training set to extend the

"https://www.sentic.net/

“https://huggingface.co/transformers/
model _doc/distilbert.html

Bhttp://twita.di.unito.it/

embedding layer of their model. Finally, the SEN-
TIPOLC 2016 dataset was exploited by UO team.

Interaction between Task A and B  Except for
TheNorth team, most of the participants did not
consider the interaction between Task A and B.
Taking into account the possible correlation be-
tween texts containing hate speech and texts ex-
pressing stereotyped ideas about targets, TheNorth
tested the performance of multitasking approach
for both tasks (second run) against a fine-tuned
UmBERTo model (first run). In particular, observ-
ing competition results we can notice the efficacy
of multitasking in hate speech identification and
not in stereotype detection.

5.3 Results

In Table 5, 6, 7 and 8, we report the official results
of HaSpeeDe 2 for Task A and B, ranked by the
macro-F1 score. In case of multiple runs, a suffix
has been appended to each team name, in order to
distinguish the run ID of the submitted file.

Team | Macro-F1
TheNorth_2 0.8088
TheNorth_1 0.7897
CHILab_1 0.7893
Fontana-Unipi 0.7803
CHILab_2 0.7782
By1510-1 0.7766
Svandiela_2 0.7756
YNU_OXZ_1 0.7717
Jigsaw_al 0.7681
URNLP_2 0.7598
DHFBK_2 0.7534
DHFBK_1 0.7495
No Place For Hate Speech_STT | 0.7491
Svandiela_1 0.7452
Montanti_1 0.7432
URNLP_1 0.7399
YNU_OXZ_2 0.7345
Montanti_2 0.7279
U022 0.7214
Baseline_SVC 0.7212
Jigsaw_js 0.717
By15102 0.7065
No Place For Hate Speech_.LRT | 0.7057
UOo_1 0.6878
Venses_1 0.5054
Venses_2 0.4726
TextWiller_1 0.3604
Baseline MFC 0.3366
TextWiller_2 0.3317

Table 5: Task A results on Twitter data.

As a general remark, we can observe that the in-
domain Main task registered better results (macro-
F1=0.8088) both compared to the cross-domain
counter-part (0.7744) and the Pilot task 1; in turn,



Team | Macro-F1
CHILab_1 0.7744
U022 0.7314
Montanti_1 0.7256
CHILab_2 0.7183
DHFBK_2 0.702
UR_NLP_2 0.6983
YNU_OXZ_2 0.6922
Montanti_2 0.6821
Jigsaw_js 0.6755
DHFBK_1 0.6744
TheNorth_1 0.671
UR_NLP_1 0.6684
UO_1 0.6657
By15102 0.6638
YNU_OXZ_1 0.6604
TheNorth_2 0.6602
Fontana-Unipi 0.6546
Jigsaw_al 0.6353
No Place For Hate Speech_STN | 0.6328
No Place For Hate Speech_.LRN | 0.6212
Baseline_SVC 0.621
Byl1510_1 0.6094
Svandiela_2 0.6031
Svandiela_l 0.5265
Venses_1 0.5024
Baseline MFC 0.3894
Venses_2 0.3805
TextWiller_1 0.3101
TextWiller 2 0.2693

Table 6: Task A results on News data.

better results were obtained in the latter with the
in-domain data compared to the News set (0.7744
and 0.7203, respectively). The best performances
overall provided by the systems used for Task A on
Twitter data is also reflected in the average value
of the macro-F1 scores of each ranking: 0.6899
for the latter, 0.6306 for Task B on Twitter data,
0.6144 for Task A on News data and 0.5972 for
Task B on News data.

We also considered the overall results achieved by
all participating teams and observed that, as re-
gards Task A, 12 and 13 teams (in the Twitter
and News test set, respectively) obtained higher
scores than the SVM-based baseline with at least
one of the submitted runs, and 13 teams, on both
domains, outperformed the one based on the most
frequent class. For Task B, and with respect to the
SVM baseline, the same is true for 4 teams out of
6 in the Twitter set and for 3 teams in the News
set, while all teams beat the majority-class base-
line with at least one run.

Regarding Task C, since the training set is com-
posed of tweets, we first investigated the macro
F-score value on a validation set created by split-
ting the training set in 80%-20%. We then tested
the memory-based baseline described in Section

Team | Macro-F1
TheNorth_1 0.7719
TheNorth_2 0.7676
CHILab_1 0.7615
Jigsaw_al 0.7415
CHILab_2 0.7386
Baseline_ SVC | 0.7149
Montanti_1 0.7076
Montanti_2 0.6889
Jigsaw_js 0.6674
TextWiller_2 0.6031
Venses_1 0.5078
Venses_2 0.4671
Baseline MFC | 0.3546
TextWiller_1 0.3369

Table 7: Task B results on Twitter data.

Team | Macro-F1
CHILab_1 0.7203
CHILab_2 0.7184
Montanti_1 0.7166
TheNorth_1 0.6854
Jigsaw_al 0.6811
Montanti_2 0.6706
Baseline SVC | 0.6688
TheNorth_2 0.6465
Jigsaw_js 0.6412
TextWiller_2 0.6053
Venses_1 0.5386
Baseline MFC | 0.3939
Venses_2 0.3671
TextWiller_1 0.3077

Table 8: Task B results on News data.

4 on the two test sets released for the task. Ta-
ble 9 shows the macro-F1 values obtained in the
validation set, in the Twitter test set as well as in
the News test set. As mentioned earlier, no sub-
missions were made for this task, but the base-
lines’ values for both domains are reported in this
overview as reference points for further works.

Baseline | Macro-F
Baseline_validation 0.1459
Baseline_test_Tweets | 0.0706
Baseline_test_News 0.0087

Table 9: Task C - Baseline results for Tweets and
News.

6 Discussion

A discussion of results, especially those regard-
ing the Main task, necessarily involves a prelim-
inary comparison with the ones obtained in the
first edition of HaSpeeDe, in particular in the two
tasks where Twitter data were used for training,
i.e. HaSpeeDe TW and Cross-HaSpeeDe TW.



The best systems attained macro-F1=0.7993 in the
former task and 0.6985 in the latter. While these
results are in line with those reported for Task A
on the in-domain data, the results obtained in this
edition on News data are better than the part cross-
domain task, where the test set was made up of
Facebook comments. We hypothesize that the ho-
mogeneity of hate target in News and Twitter cor-
pora (immigrants) has meant more than the similar
linguistic features in Twitter and Facebook data,
stemming from the fact that they are both social
media texts.

Participants achieved promising results in the
detection of stereotypes, a new pilot task proposed
at HaSpeeDe this year for the first time. In our
view, stereotype and HS are meant as orthogo-
nal dimensions of abusive language, which do not
necessarily coexist. This influenced the design of
HaSpeeDe 2, where we proposed two independent
tasks for the detection of such categories. How-
ever, a first analysis of systems participating in
both tasks suggests that most teams did not de-
sign a dedicated system for stereotype recognition,
but focused on developing a HS detection model,
adapting the same model to stereotype recogni-
tion, reducing de facto stereotypes to characteris-
tics of HS. We hypothesize that this could be one
of the factors that led the systems to not gener-
alize well when applied to the stereotype detec-
tion task, especially in texts that are not hateful
but contain stereotypes. This hypothesis is con-
firmed by the high percentage of false negatives
(21% in tweets and 35% in news headlines) of
the stereotype class in non-hateful texts, with re-
spect to false negatives (5% in tweets and 28% in
news headlines) in hateful ones. It is possible to
notice the same increase also in false positives in
hateful texts. These values suggest that stereotype
appears as a more subtle phenomenon that could
not give rise to hurtful message. The percentages
have been computed taking into account the set
of common incorrect predictions of the three best
runs in Task B, and calculated in relation to the
actual distribution of HS and stereotype in the test
set. Analyzing the predictions of the three best
runs in Task A, similar influence of stereotype is
observed in false negative and positive, but to a
minor extent. These results are in line with the ob-
servations about emerged from the error analysis
of HaSpeeDe 2018 (Francesconi et al., 2019).

To conclude the discussion on this edition’s re-

sults, we comment on the baseline scores obtained
for Task C. As it can be noticed from Table 9, the
value obtained on the validation set is higher than
the ones obtained on both test sets. This variation
can be explained by the main characteristics of the
data at hand: on the Twitter side, this is due to
the different time frames of tweet’s publication in-
cluded in training and test set, while on the News
side, such low value is expected by virtue of the
different text domain. Since this baseline uses a
memory-based approach, such a low performance
is to be expected in datasets from different time
frames, since the discussion topics are different
and Twitter users change their hashtags and slo-
gans, which are the main repeated items.

7 Conclusions

In its second edition, the HaSpeeDe task proposed
the detection of hateful content in Italian, by chal-
lenging systems along two dimensions, time and
domain, and taking into account also the category
of stereotype, which often co-occurs with HS. This
paves the way for further investigations also about
the relationships linking stereotype and HS.

In order to take a step further in state-of-the-
art HS detection, the task provided novel bench-
marks for exploring different facets of the phe-
nomenon and laying the foundations for deeper
studies about the impact of bias, topic and text do-
main. In this line, also a pilot task about recog-
nition of NUs was proposed, devoted to study
this kind of linguistic form in hateful messages
in tweets and newspaper headlines, as it has been
proved that both headlines in journalistic writings
(Mortara Garavelli, 1971) and social media texts
(Ferrari, 2011; Comandini et al., 2018) are a fertile
ground for NUs. Even though we did not receive
any submission for Pilot task 2, our hope is that the
fine-grained annotation of hateful data concerning
these aspects can be the subject of deeper studies
to shed light on the syntax of hate, a topic still un-
derstudied.
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