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Abstract

Relation Extraction (RE) models are crucial to many Natural Language Processing (NLP) applications, but often
inherit and deepen biases in their training data. The underrepresentation of certain demographic groups can lead
to performance disparities, particularly when considering intersectional fairness, where biases intersect across
attributes such as gender and ancestry. To address this issue, we present IntersectionRE, a framework to
improve the representation of underrepresented groups by generating synthetic training data. IntersectionRE
identifies gaps in demographic coverage and optimizes data generation, ensuring the quality of augmented data
through Large Language Models (LLMs), perplexity scoring, and factual consistency validation. Experimental
results on the NYT-10, and Wiki-ZSL datasets demonstrate that our approach effectively reduces intersectional
representation and model performance disparities, particularly for historically underrepresented groups.

Keywords

Representation Bias, Synthetic Data Generation, Relation Extraction,

1. Introduction

Relation extraction (RE), a key task in natural language processing (NLP), identifies and classifies
semantic relationships between entities [1]. It supports downstream tasks like knowledge graph
construction [2], question-answering [3], and information retrieval [4]. Despite strong performance on
benchmarks [5, 6, 7], modern neural RE models often exhibit biases across demographic groups [8, 9, 10].

Biases in RE models often stem from their training datasets, directly influencing model predictions [11,
12]. Poorly curated datasets may underrepresent certain populations due to biased data collection,
historical inequalities, or sampling imbalances, leading to discriminatory outcomes and unreliable
predictions [13, 14, 15]. For instance, an RE model trained mostly on data featuring male individuals
may struggle with relationships involving female subjects. This systematic underrepresentation, known
as representation bias, limits the model’s ability to generalize across diverse populations [16].

Representation bias becomes more complex when multiple demographic attributes intersect, known
as intersectional fairness [17]. Biases can arise within individual groups (e.g., gender or race) and intensify
at their intersections. For example, a model may perform well for females and Asians separately, but
struggle with Asian females due to underrepresentation [18]. These gaps can lead to systematic RE
failures, reinforcing societal biases. Addressing them is crucial for equitable model performance and
reducing errors for marginalized groups.

While bias mitigation strategies exist throughout the Machine Learning (ML) pipeline, addressing
bias during pre-processing offers a fundamental solution by improving data distribution [15]. Prior
work on analyzing biases in RE, such as [9] revealed gender-based performance disparities, and [10]
expanded analysis to intersectional biases through cross-dataset comparisons. However, they do not
propose methods to systematically address intersectional representation gaps.

To address these challenges, we present IntersectionRE, a framework for identifying and miti-
gating intersectional representation gaps in RE datasets. We use pattern-based coverage analysis to
quantify demographic representation and identify Maximal Uncovered Patterns (MUPs) to highlight
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key coverage gaps. We then apply an Integer Linear Programming (ILP) component to determine the
minimal number of synthetic examples needed for balance. Finally, we generate high-quality synthetic
data using an LLM-based generator, preserving data characteristics and feature distributions. This
approach allows us to balance demographic representation across dimensions while maintaining data
integrity. Our experiments demonstrate that this approach reduces intersectional coverage gaps and
also improves model fairness and overall performance across underrepresented subgroups. Notably, we
observe substantial gains in F1 and reductions in disparity across both NYT-10 [19] and Wiki-ZSL [20]
datasets, with minimal augmentation overhead.

This study makes four key contributions: (1) IntersectionRE, a framework that detects and
mitigates intersectional representation gaps in RE tasks through pattern-based gap analysis and syn-
thetic data generation; (2) An ILP-based strategy and LLM-based synthetic data generator to enhance
demographic representation while preserving data integrity; (3) Empirical evidence on the NYT-10,
and Wiki-ZSL datasets showing effective bias mitigation and improved model performance across
demographic groups; and (4) A practical method for enriching RE datasets with demographic attributes
(gender and ancestry), enabling fine-grained fairness analysis previously noted as infeasible for RE
datasets [9].

2. Background

ML models trained on biased datasets can amplify societal inequalities through unfair predictions [21].
In RE models, biased data often results in missing relationships for underrepresented groups. This
section examines RE biases, their impacts, and introduces ways to quantify representation and address
dataset gaps.
2.1. Relation Extraction and Patterns

Relation Extraction (RE) identifies and classifies semantic relationships between entities in text.
Given a sentence 𝑥 with subject 𝑠 and object 𝑜, the goal is to predict their relation label 𝑦 ∈ 𝒴 ,
where 𝒴 is a set of predefined relation types, such as founder and employer. For example, in
𝑥 = {Steve Jobs is the founder of Apple}, with 𝑠 = {Steve Jobs} and 𝑜 = {Apple}, an
RE model identifies 𝑦 = {founder}.

A pattern 𝑃 represents a subgroup of records sharing specific attribute values [22]. Formally, 𝑃 is a
vector of size 𝑑 (number of attributes), where each element 𝑃 [𝑖] is either a specific value from attribute
𝑖’s domain or an unspecified value denoted as 𝑋 . For example, in a dataset with three binary attributes
{𝑥1, 𝑥2, 𝑥3}, the pattern 𝑃 = 𝑋01 includes records with 𝑥2 = 0, 𝑥3 = 1, and any value for 𝑥1. A
record 𝑡 matches pattern 𝑃 (denoted as 𝑀𝑎𝑡𝑐ℎ(𝑡, 𝑃 )) if for all 𝑖 where 𝑃 [𝑖] ̸= 𝑋 , 𝑡[𝑖] = 𝑃 [𝑖].

To measure representation bias, we use coverage to quantify subgroup representation in a dataset
𝒟: 𝐶𝑜𝑣(𝑃 ) = |{𝑡 ∈ 𝒟 | 𝑀𝑎𝑡𝑐ℎ(𝑡, 𝑃 )}|/|𝒟|. For example, if |𝒟| = 100 and 21 records match pattern
𝑃 = 𝑋01, then 𝐶𝑜𝑣(𝑃 ) = 0.21. A pattern 𝑃 is uncovered if 𝐶𝑜𝑣(𝑃 ) < 𝜏 , where 𝜏 is the minimum
required coverage.

Coverage gaps occur when patterns in a dataset are uncovered, leading to potential biases and unfair
predictions for these subgroups. Given a dataset 𝒟 and a coverage threshold 𝜏 , the coverage gap for
a pattern 𝑃 is: 𝐺𝑎𝑝(𝑃 ) = (𝜏 − 𝐶𝑜𝑣(𝑃 ))× |𝒟|. This represents the minimum number of additional
records needed to meet the threshold. For example, if |𝒟| = 100, 𝐶𝑜𝑣(𝑃 ) = 0.21, and 𝜏 = 0.3, the gap
is (0.3− 0.21)× 100 = 9, meaning nine more records are needed for adequate representation of 𝑃 .

Two patterns are related through a parent-child relationship based on their specified attributes.
Pattern 𝑃1 is a parent of 𝑃2 (𝑃1 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑃2)) if it can be formed by replacing exactly one specified
value in 𝑃2 with 𝑋 . Conversely, 𝑃2 is a child of 𝑃1 (𝑃2 ∈ 𝑐ℎ𝑖𝑙𝑑(𝑃1)). A pattern can have multiple
parents and children. For example, for 𝑃 = 101, its parents are 𝑝𝑎𝑟𝑒𝑛𝑡(𝑃 ) = {𝑋01, 1𝑋1, 10𝑋}, each
created by replacing one value with 𝑋 .

In analyzing coverage gaps, we identify the most general uncovered patterns, called Maximal Uncov-
ered Patterns (MUPs). A pattern 𝑃 is an MUP if: (1) it is uncovered (𝐶𝑜𝑣(𝑃 ) < 𝜏 ) and (2) all its parents



have adequate coverage (∀𝑃 ′ ∈ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑃 ) : 𝐶𝑜𝑣(𝑃 ′) ≥ 𝜏 ). MUPs capture broad underrepresented
subgroups without redundancy from more specific child patterns.
2.2. Fairness Definition

In this work, we focus on demographic attributes of gender 𝒢 and ancestry 𝒜. Our primary fairness
objective is to improve the representation of underrepresented groups in 𝒢 × 𝒜. However, as RE
models are ultimately judged by predictive behavior, we also assess fairness in model predictions to
ensure consistency across demographic groups [9]. We evaluate fairness from two complementary per-
spectives: (1) representation in the data and (2) equitable model performance across demographic groups.

Representation Fairness Metrics. To assess demographic representation, we evaluate four
normalized metrics in the range [0, 1], where higher values indicate better balance: (1) Balance Score:
normalized female-to-male ratio, min

(︀𝐶𝑜𝑣(FemaleX)
𝐶𝑜𝑣(MaleX) , 𝐶𝑜𝑣(MaleX)

𝐶𝑜𝑣(FemaleX)

)︀
, (2) Gender Gap: indicates the

absolute coverage difference between genders
⃒⃒
𝐶𝑜𝑣(FemaleX)− 𝐶𝑜𝑣(MaleX)

⃒⃒
, (3) Ancestry Gap: the

complement of the standard deviation over coverage of each ancestry, 1 − std
(︀
𝐶𝑜𝑣(𝑋𝑎) | 𝑎 ∈ 𝒜

)︀
,

and (4) Intersectional Gap: the complement of the standard deviation over all subgroup coverages,
1− std

(︀
𝐶𝑜𝑣(𝑔𝑎) | 𝑔 ∈ 𝒢, 𝑎 ∈ 𝒜

)︀
.

Performance Fairness Metrics. To evaluate consistency in model behavior, we adopt two metrics
from [9]: the Disparity Score (DS) and the Performance Parity Score (PPS). DS quantifies performance
variation across groups. We compute the average pairwise absolute difference in F1 scores across all
demographic subgroups in 𝒢 ×𝒜. Let {𝑔1, 𝑔2, . . . , 𝑔𝑚} denote the set of demographic groups, and 𝐹𝑔𝑖

the F1 score for group 𝑔𝑖. Then:

𝐷𝑆 =
2

𝑚(𝑚− 1)

∑︁
1≤𝑖<𝑗≤𝑚

|𝐹𝑔𝑖 − 𝐹𝑔𝑗 |,

where 𝑚 = |𝒢 × 𝒜| representing the number of gender and ancestry combinations. A lower DS
indicates more uniform model performance across groups. On the other hand, PPS combines accuracy
and fairness into a single measure. It is defined as the difference between the macro-averaged F1 score
across all subgroups and the DS. A higher PPS reflects models that are both accurate on average and
consistent across demographic groups.

We adopt these fairness metrics because most existing notions, such as Demographic Parity and
Equalized Opportunity, are originally defined for binary classification, where a single positive or negative
prediction is made [23]. However, RE is inherently a multi-label task. As noted by Liu et al. [24], directly
applying binary fairness metrics to multi-label settings is problematic due to label imbalance and
co-occurrence patterns. This imbalance leads to unreliable or unstable fairness estimates, especially for
infrequent relations. Our chosen metrics are tailored to operate at the group level across all demographic
groups and account for representation bias in data and variation in model behavior.

2.3. Problem Definition

Given a RE dataset 𝒟 with triples (subject 𝑠, relation 𝑟, object 𝑜) and demographic attributes (gender
𝒢, ancestry 𝒜), the goal is to mitigate representation biases from coverage gaps, especially intersec-
tional ones, that affect model performance for underrepresented groups. We analyze intersectional
representation using patterns 𝑃 and identify MUPs to address gaps without redundant subpattern
analysis.

Improving MUP coverage is crucial because MUPs represent the broadest underrepresented subgroups,
and by increasing coverage for these general patterns, we automatically improve the coverage of all
their more specific child patterns. For each MUP 𝑀 , at least 𝐺𝑎𝑝(𝑀) additional records are needed
to meet the coverage threshold 𝜏 . This process balances fairness across gender and ancestry while
minimizing synthetic data to preserve data quality.



2.4. Synthetic Data Generation

Synthetic data generation is a key approach to addressing representation bias in ML datasets, where
imbalanced demographics can lead to discriminatory model behavior [25]. It helps mitigate biased
predictions by balancing demographic attributes while minimizing generated records [26]. However,
balancing representation is challenging, especially with intersectional attributes [15], due to the difficulty
of ensuring proportional representation across dimensions (e.g., gender, race) while addressing coverage
gaps [27]. For example, if Black females are underrepresented compared to Black males or Asian females,
data generation must fill this gap without disrupting other balances. Overcompensation can create new
biases, making it hard to maintain fairness and data integrity.

To address these challenges, we optimize synthetic data generation to minimize records while meeting
representation goals [28]. Traditional greedy algorithms often yield suboptimal results and struggle
to maintain demographic balance [29, 30]. To overcome this, we use ILP [31] to define coverage and
intersectional balance constraints, minimizing synthetic records while ensuring fair representation
across all intersections [32]. This approach is especially effective for MUPs, providing globally optimal
solutions that satisfy all gaps and constraints. The next section details our ILP formulation and
implementation.

3. IntersectionRE

This section presents IntersectionRE for addressing intersectional representation bias in RE datasets,
consisting of five components: (1) a data enrichment pipeline adding demographic attributes, (2) a
pattern identification algorithm detecting underrepresented groups via MUP analysis, (3) an ILP-based
planner minimizing required records while ensuring balance, (4) an entity collection module sourcing
data from knowledge bases, and (5) an LLM-based generator producing synthetic factual samples. The
following sections detail each component’s role in mitigating bias.

3.1. Data Enrichment Pipeline

Analyzing intersectional fairness in RE datasets requires demographics (e.g., gender, ancestry), which
are often missing [10]. For example, a record like (Steve Jobs, Founder, Apple) lacks demographic
details. To address this, we developed a data enrichment pipeline using Wikidata to extract demographic
attributes, consisting of two stages: First, for each record, we focus on relation labels, such as founder,
place_of_birth, profession, and nationality that involve human entities, excluding records
without them to ensure relevant demographic analysis. Then, for identified human entities, we retrieve
attributes like gender and citizenship from Wikidata. We map each country to a broader ancestry
group (e.g., African, Asian, European/Western, Latino/Caribbean, Middle Eastern) using
a curated country-to-ancestry mapping, enabling meaningful aggregation to identify representation
patterns and coverage gaps.

3.2. Pattern Identification

After enriching the dataset with demographic attributes, we identify underrepresented groups by
analyzing coverage patterns based on gender and ancestry, focusing on MUPs that represent the broadest
coverage gaps. Since identifying all MUPs is computationally intensive [15], we propose an algorithm
inspired by DEEPDIVER [22]. DEEPDIVER uses a hybrid strategy combining downward traversal with
immediate upward verification, checking all ancestor patterns to confirm MUPs, but our approach
simplifies this by verifying only the immediate parent during downward traversal and deferring full
maximality checks to a post-processing phase. We apply two pruning strategies: (1) Coverage-Based
Pruning, where patterns meeting or exceeding the threshold have their children explored as potential
MUPs, and (2) Parent-Based Pruning, where patterns below the threshold are pruned if their immediate
parent is also uncovered. This reduces verification overhead, with post-processing ensuring only
maximal patterns are retained.
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Figure 1: Tree structure illustrating DFS-based MUP discovery with pruning. Red nodes represent identified
MUPs, while dashed nodes and edges indicate pruned patterns and paths.

As shown in Figure 1, consider a dataset with attributes Gender: {Male (𝑀 ), Female (𝐹 )} and
Ancestry: {Asian (𝐴), European (𝐸), Latino (𝐿)}, and a threshold 𝜏 = 0.3. Starting from the root
𝑋𝑋 (coverage 1.0), its children 𝑀𝑋 and 𝐹𝑋 are explored since 𝑋𝑋 exceeds the threshold. 𝑀𝑋
(coverage 0.8) is not a MUP, so its children 𝑀𝐴, 𝑀𝐸, and 𝑀𝐿 are explored. 𝐹𝑋 (coverage 0.2) is
a potential MUP, and Coverage-Based Pruning skips its children (𝐹𝐴, 𝐹𝐸, 𝐹𝐿) since their parent is
already uncovered. For 𝑀𝐿 (coverage 0.2), our algorithm checks only its immediate parent (𝑀𝑋),
unlike DEEPDIVER, which checks both 𝑀𝑋 and 𝑋𝑋 . This streamlined approach flags 𝑀𝐿 as a
potential MUP, with maximality verified during post-processing.
3.3. ILP-based Generation Plan

After identifying MUPs, we use an ILP-based planner to minimize synthetic records while ensuring
coverage. Unlike greedy algorithms [30], which require iterative MUP recalculations and struggle to
maintain demographic balance, our ILP ensures global optimality in a single step. It minimizes synthetic
records under two constraints: (1) generating at least 𝐺𝑎𝑝(𝑀) records per MUP to meet coverage
thresholds and (2) maintaining balanced gender ratios within each ancestry group. This prevents
addressing gaps for one group (e.g., Asian females) from creating imbalances in others.

Let 𝒢 = {Female, Male} and 𝒜 = {African, Asian, European/Western, Latino/Caribbean,
Middle Eastern}. To avoid new biases, we track for each ancestry 𝑎 ∈ 𝒜 the number of female
records (𝐹𝑎), total records (𝑇𝑎), and female ratio (𝑅𝑎 = 𝐹𝑎/𝑇𝑎). Simply adding new records can skew
the balance. For example, for MUP 𝑀1 = {Female, Asian} with 0.01 coverage in a dataset of 1000
records and threshold 𝜏 = 0.05 where the pattern 𝑃 = {X, Asian} has the coverage of 0.05, the gap
𝐺𝑎𝑝(𝑀1) = 40 requires 40 more records. Adding only female records would skew gender balance, so
the ILP determines how many male Asian records to add to maintain fairness. To formulate this as an
ILP, we define decision variables (𝑥𝑔,𝑎 ≥ 0, ∀𝑔 ∈ 𝒢, 𝑎 ∈ 𝒜) indicating the number of synthetic records
to generate for each gender and ancestry combination. These variables are only active for demographic
combinations linked to MUPs, minimizing unnecessary data generation.

The next step in the ILP formulation is defining the objective function. Our primary goal is to minimize
the total number of synthetic records required to meet demographic coverage and intersectional balance
requirements: minimize

∑︀
𝑔∈𝒢

∑︀
𝑎∈𝒜 𝑥𝑔,𝑎. This minimization ensures efficient data generation by

creating only the necessary records to address coverage gaps identified by MUPs.
Then, we need to define the constraints. Our ILP formulation includes two constraints to ensure

adequate coverage and intersectional balance: (1) coverage constraints and (2) gender balance constraints.
To satisfy the coverage constraints, for each MUP (𝑀 ∈ ℳ), we ensure coverage gaps are filled:∑︀

𝑔∈𝒢𝑀

∑︀
𝑎∈𝒜𝑀

𝑥𝑔,𝑎 ≥ 𝐺𝑎𝑝(𝑀), where 𝒢𝑀 and 𝒜𝑀 represent the gender and ancestry sets specified
in MUP 𝑀 . For specified attributes (e.g., Female), the set contains only that value, and for unspecified
attributes (𝑋), it includes all possible values.

To satisfy the gender balance constraints, for each ancestry group 𝑎 ∈ 𝒜𝑀 we
implement adaptive bounds: min_𝑅𝑎 ≤ 𝐹𝑎+𝑥female,𝑎

𝑇𝑎+𝑥female,𝑎+𝑥male,𝑎
≤ max_𝑅𝑎. We set

(min_𝑅𝑎,max_𝑅𝑎) = (min(𝛼1𝑅𝑎, 0.5),max(𝛽1𝑅𝑎, 0.5)) when 𝑅𝑎 < 0.33 (severe), and
(min(𝛼2𝑅𝑎, 0.45),max(𝛽2𝑅𝑎, 0.55)) otherwise, where 𝐹𝑎 and 𝑇𝑎 are current female and total counts,
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Figure 2: LLM-based record generation architecture, featuring prompt management providing relation-specific
prompts for the model, with generated sentences validated by Perplexity Scoring and ClaimBuster tools.

and 𝑥female,𝑎, 𝑥male,𝑎 are decision variables. The threshold 0.33 reflects a 2:1 male-to-female ratio [10],
and 𝛼1, 𝛼2, 𝛽1, 𝛽2 are control adjustment rates. We then obtain an ILP plan with variables 𝑥𝑔,𝑎
(𝑔 ∈ 𝒢𝑀 , 𝑎 ∈ 𝒜𝑀 ) specifying the minimal records required per intersection to close coverage gaps.

3.4. Entity Collection from Knowledge Bases

To generate realistic records, we convert the ILP-based plan into synthetic data using Wikidata (struc-
tured) and Wikipedia (unstructured). For each gender–ancestry pair, we map ancestry to countries
(Section 3.1), distribute entities accordingly, and apply per-citizenship limits for diversity. SPARQL
queries retrieve Wikidata entities with matching gender and citizenship, along with biographical details
(e.g., founder, employer, place_lived, religion,
profession, nationality). To enrich context, we also fetch Wikipedia introductions via the Wiki-
Media API. This blend of structured and unstructured data ensures factual accuracy while meeting
demographic requirements.

3.5. LLM-based Record Generation

Our framework’s final stage uses a GPT-4-powered AI agent to generate synthetic records. Figure 2
illustrates the agent’s architecture, which consists of prompt management components, a core generation
model, and validation tools. The agent uses GPT-4 to map each relation-specific prompt 𝑝 to synthetic
records 𝑥. Each prompt 𝑝 is tailored to capture the unique traits of a relation label 𝑦 ∈ 𝒴 , ensuring the
generated sentence 𝑥 accurately reflects the entity relationship. In this process, the agent addresses
two validation challenges: (1) distribution alignment, ensuring 𝑥 matches the linguistic and structural
patterns of the original dataset 𝒟, and (2) factual consistency, ensuring 𝑥 accurately reflects input
relationships. It uses a Perplexity Scoring Tool for language alignment and ClaimBuster [33] for factual
consistency.

To guide GPT-4, we design relation-specific prompts 𝑝 with the following components (Figure 2): (1)
a system prompt & instruction template tailored to each relation 𝑦, defining constraints and guidelines,
(2) contextual requirements, focusing on verified facts, achievements, or relevance (e.g., lived_in for
locations, employer for roles), and (3) few-shot examples, combining curated and dynamic samples for
diverse, in-context guidance.

The agent incorporates two key validation mechanisms to ensure the quality of generated records:
distribution alignment and factual consistency. For distribution alignment, we measure perplexity per
relation using a pre-trained model (e.g., GPT-2), where lower perplexity indicates better fluency and
alignment. Specifically, we ensure that the perplexity of any generated sentence does not exceed the
mean plus two standard deviations of perplexity values calculated for existing sentences of the same
relation label. This method confirms that generated sentences maintain a consistent quality and style
with the dataset’s typical variability.

For factual consistency, the agent uses ClaimBuster with dynamic thresholding. Let 𝜑(𝑥) be the Claim-
Buster scoring function assigning a factuality score in [0,1]. For each relation 𝑦, we set the threshold 𝜃𝑟



at the 25th percentile of original dataset scores: 𝜃𝑟 = percentile25({𝜑(𝑥) | 𝑥 ∈ 𝒟, relation(𝑥) = 𝑦}),
ensuring generated sentences are at least as factual as 75% of the original dataset. Sentences must meet
𝜑(𝑥) ≥ 𝜃𝑟; those below are refined with stricter prompts and re-evaluated. Only sentences passing
after either stage are accepted, ensuring high factual consistency. The agent iteratively refines and
regenerates sentences using adjusted prompts until they meet both distributional and factual standards
or reach a retry limit, ensuring the generation of high-quality, realistic synthetic records that effectively
address representation gaps.

4. Experimental Results and Analysis

This section focuses on evaluating our framework for addressing intersectional representation bias in
RE datasets, specifically: (1) improving demographic representation, (2) impact on model performance
across subgroups, and (3) efficient synthetic data generation via ILP.
4.1. Experimental Setup

Datasets. We conduct our experiments on two RE benchmarks: NYT-10 [19] and Wiki-ZSL [20].
NYT-10 is a widely used benchmark with 70,339 records and 52 relation labels, collected from the
New York Times corpus via distant supervision using Freebase. To enable demographic analysis, we
filtered for records containing at least one human entity, resulting in 30,818 records across 15 human-
centric relation types. The most frequent relations include place_of_birth (21.3%), nationality
(18.7%), employer (15.4%), and place_lived (14.2%). We enriched the dataset with demographic
attributes like gender and ancestry (Section 3.1), revealing a skewed distribution (12.4% females vs.
87.6% males and ancestry disparities (European/Western 71.1%, Middle Eastern 11.7%, Asian
9.2%, Latino/Caribbean 4.9%, and African 3.1%). These imbalances highlight the need to address
intersectional coverage gaps for equitable representation.

Wiki-ZSL is a RE dataset constructed from Wikipedia via distant supervision, containing 113
relation types in total [20]. For our experiments, we selected a fixed subset (SEED) comprising five
distinct relations of {employer, place of birth, religion, country of citizenship,
residence} and used it for training and testing. Similar to the NYT-10 setup, we filtered the dataset
to retain only instances involving at least one human entity, resulting in 8,827 records. We randomly
split this subset into 80% training and 20% testing data (7,061 training records). The same demographic
enrichment procedure (Section 3.1) was applied to annotate each record with gender and ancestry
attributes. The resulting training set revealed a skewed distribution (12.1% females vs. 87.9% males)
and ancestry disparities (European/Western 84.8%, Asian 5.3%, Latino/Caribbean 5.1%, Middle
Eastern 2.7%, African 2.1%).

Implementation. We queried demographic attributes from Wikidata using SPARQL, optimized
via SPARQLWrapper, and pre-designed citizenship to ancestry mappings. The ILP was formulated
using Gurobi, applying dynamic gender balance constraints based on 𝑅𝑎 (stricter when 𝑅𝑎 < 0.33:
𝛼1 = 1.5, 𝛽1 = 2; relaxed otherwise: 𝛼2 = 0.9, 𝛽2 = 1.1). Synthetic records were generated with
GPT-4 (200-token limit, temperature 0.0) and validated via GPT-2 perplexity scoring [34] for fluency
and ClaimBuster [33] for factual consistency. We fine-tuned the REBEL-large model [5] (a seq2seq
BART-based RE model [35]) on the respective datasets, training for 3 epochs with AdamW (learning
rate 2𝑒− 4, batch size 4). The implementation and experimental artifacts for IntersectionRE are
available at the project GitHub page1. To validate our method, we include a naive oversampling baseline,
where instances from underrepresented gender–ancestry subgroups are duplicated until each group
meets the target coverage threshold [36]. This allows us to compare our ILP-based approach against a
simple yet commonly used strategy for addressing representation bias.

1https://github.com/AmirLayegh/IntersectionalRE

https://github.com/AmirLayegh/IntersectionalRE
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Figure 3: Intersectional representation across the original dataset, generated dataset with intersectional
balance constraint, generated dataset without intersectional balance constraint, and oversampled
dataset.

4.2. Representation Fairness

We analyzed intersectional representation in the original dataset and our proposed solutions. To
evaluate our ILP-based constraints, we conducted experiments in four settings: (1) the original dataset,
(2) our framework with intersectional balance constraints, (3) our framework with constraints off,
focusing on the MUP coverage threshold, and (4) a naive oversampling baseline.

Baseline Coverage Gap in Original Dataset. To assess intersectional gaps, we used a coverage
threshold of 0.15, representing the minimal expected coverage per group, given five ancestry
groups and two genders (ideally 10% each if evenly distributed). This value balances real-world
demographic imbalances with meaningful targets for underrepresented groups. Figure 3 (Left) shows
demographic representation in the original datasets, with rectangles indicating the percentage of each
gender-ancestry combination and color intensity reflecting coverage (darker = higher). In both original
datasets, European/Western males dominate (61.7%, 75.7%), while female representation is minimal,
peaking at 9.4% and 8.7%, and dropping to 0.3% for African females. Groups like African males
(2.8%, 2.2%) and Latino/Caribbean females (0.4%, 0.5%) fall well below the threshold, highlighting
systemic biases and the need for targeted augmentation.

Coverage Improvements with Augmentation. Figure 3 also illustrates the impact of augmentation
strategies across both datasets. In the With Balance Constraint setting, representation becomes
substantially more uniform, with most groups reaching or exceeding the 0.15 threshold. Female
representation improves across ancestries, and coverage becomes more equitably distributed.
The Without Balance Constraint and Oversampling conditions show uneven results. While some
underrepresented groups see improvements, subgroups like European/Western males benefit
disproportionately, increasing to 49.4% and 45.7%, whereas groups such as Middle Eastern and
Asian females remain below the 0.15 threshold. This highlights the need for intersectional balance
constraints to achieve fair coverage.

Gender Ratios Across Approaches. To evaluate gender equity across ancestry groups, we computed
the female-to-male ratio for each group. An ideal ratio of 0.5 indicates equal representation, yet in the
original dataset, ratios are skewed, with females comprising less than 0.15 in most groups, showing
severe under-representation. Applying intersectional balance constraints achieves near-parity across
ancestries, effectively addressing these imbalances. For example, African and Middle Eastern
groups reach ratios close to 0.5 from near-zero. In contrast, the absence of such constraints leads to
partial improvements but fails to ensure consistent gender equity. The Oversampling method also
results in broadly similar gender ratios to the With Balance Constraint approach, reflecting improved
parity across most subgroups.

Intersectional Representation Fairness. Figures 4a and 4b show the metrics defined in Section 2.2
for assessing intersectional representation fairness. The original datasets exhibit substantial disparities,
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Figure 4: Intersectional fairness metrics for (a) Wiki-ZSL and (b) NYT-10 across Original, Without Constraints, and
With Constraints; higher is better for all four metrics.

Table 1

Model Performance Comparison Across Demographic Groups on NYT and Wiki-ZSL Datasets. Con-
strained indicates our ILP-based optimization applied for data generation.

NYT Original NYT Constrained NYT Oversampled Wiki Original Wiki Constrained

Gender Ancestry F1 FPR F1 FPR F1 FPR F1 FPR F1 FPR

Female African 0.000 1.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Asian 0.773 0.074 0.941 0.111 0.630 0.370 0.444 0.556 0.857 0.143
European/Western 0.795 0.199 0.890 0.199 0.660 0.340 0.774 0.226 0.729 0.271
Latino/Caribbean 0.889 0.200 1.000 0.000 0.800 0.200 0.800 0.200 1.000 0.000
Middle Eastern 0.870 0.020 0.950 0.015 0.000 1.000 1.000 0.000 0.800 0.200

Male African 0.756 0.179 0.923 0.143 0.607 0.393 0.600 0.400 0.737 0.263
Asian 0.902 0.178 0.861 0.200 0.756 0.244 0.795 0.205 0.807 0.193
European/Western 0.805 0.323 0.755 0.228 0.607 0.393 0.737 0.263 0.776 0.224
Latino/Caribbean 0.911 0.116 0.911 0.163 0.837 0.163 0.769 0.231 0.757 0.243
Middle Eastern 0.890 0.025 0.950 0.018 0.811 0.189 0.826 0.174 0.731 0.269

Disparity Score (DS) 0.226 — 0.080 — 0.272 — 0.186 — 0.113 —
Performance Parity Score (PPS) 0.533 — 0.838 — 0.399 — 0.589 — 0.706 —

with consistently low scores (≤ 0.15) across all metrics, while the Without Intersectional Balance
Constraints approach shows moderate, uneven improvements (0.35–0.45). In contrast, the With
Intersectional Balance Constraints method achieves the highest scores across both datasets, with ancestry
gap reaching 0.75 and intersectional gap up to 0.68, effectively mitigating representation biases. The
balance score and gender gap improve substantially from 0.124 (original) to 0.569 (constrained) in
NYT-10, and from 0.105 (original) to 0.51 (constrained) in Wiki-ZSL, successfully reducing gender
disparities while maintaining ancestry balance.

4.3. Model Fairness Evaluation

Table 1 shows significant variations in the REBEL model’s performance when fine-tuned on the original
NYT-10 dataset versus the demographically augmented version. The augmented model’s F1 score
improves from 0.782 to 0.845, reflecting better overall performance, though gains are uneven across
demographic groups. Notably, underrepresented groups like African males, African females,
Middle Eastern females, and Latino/Caribbean females see substantial improvements,
indicating the augmentation effectively addresses representation gaps. While dominant groups such as
European/Western males show a slight F1 decrease (−0.050), this is offset by improvements across
underrepresented groups. The augmented model also reduces false positive rates (FPR) across most
demographics while maintaining strong performance for Middle Eastern groups. However, these
results are influenced by demographic imbalances in the test set, potentially affecting metric reliability
for smaller groups. This highlights the need for evaluation methods that account for distributional
biases in both training and testing phases.
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A similar pattern is observed on the Wiki-ZSL dataset, where overall F1 improves from 0.745 to 0.772
with constrained augmentation. Performance gains are most notable for groups that initially showed
lower scores, such as Asian females and Latino females, both of whom show considerable
improvement in F1 and FPR. Dominant groups like European/Western males maintain consistent
performance with minimal variation. These findings suggest that the proposed augmentation strategy
generalizes well across datasets, improving both effectiveness and fairness.

In contrast, the oversampling approach applied to the NYT dataset results in a drop in overall F1
to 0.642, with uneven changes across demographic groups. While some underrepresented groups see
slight improvements, others (e.g., Middle Eastern females) experience degraded performance,
including complete failure in recall. F1 scores for dominant groups like European/Western males
also decrease significantly, indicating that duplicating data without structural balance introduces noise
and redundancy.

The additional fairness metrics provide a clearer picture. The DS drops from 0.226 to 0.080 with
our constrained augmentation on NYT, and from 0.186 to 0.113 on Wiki-ZSL, showing a measurable
reduction in performance gaps. The PPS also increases across both datasets, reflecting more consistent
outcomes across demographic groups. In contrast, oversampling results in the highest DS (0.272) and
lowest PPS (0.399), confirming that it introduces new performance imbalances rather than resolving
the existing ones.
4.4. Statistical Consistency

We compared sentence length distributions between the original NYT-10 and the augmented dataset to
assess stylistic consistency. Figure 5 shows closely aligned density curves, supported by a low Jensen-
Shannon Divergence (0.0411) and KS test statistic (0.0491, 𝑝 < 0.0001). Sentence length statistics
confirm this: the original dataset has a mean of 40.95, a median of 39.00, and a standard deviation of
78.92, while the augmented dataset shows a mean of 39.81, a median of 37.00, and a standard deviation
of 75.55, indicating minimal deviation.

For quality assessment, the vocabulary size grew from 37, 168 to 42, 862, showing that the augmented
dataset introduces new vocabulary while maintaining a reasonable growth rate. This suggests the
generated text preserves the domain-specific language of the original dataset. The Type-Token Ratio
(TTR), measuring lexical diversity as the ratio of unique words to total words, rose slightly from 0.0349
to 0.0378 (+8.3%), maintaining diversity without excessive repetition. The Hapax Percentage, indicating
the proportion of words appearing only once, increased from 24.71% to 27.60% (+11.7%), reflecting
more unique terms, likely from new entity names. These results demonstrate that our augmentation
approach effectively enhances coverage and diversity while preserving linguistic and structural integrity.
4.5. Discussion

As shown by the results, our approach effectively reduces representation bias in the dataset, consequently
enhancing intersectional representation fairness. Notably, this is achieved by improving demographic
balance in the data and also by producing more equitable model predictions across demographic groups.

We acknowledge that our method introduces complexity through the use of an ILP-based framework,
MUP analysis, and intersectional constraints. However, this complexity is justified by the nature of the
problem. As highlighted by Asudeh et al. [22], achieving a globally optimal solution that minimizes the



number of synthetic records while satisfying strict multi-dimensional coverage constraints is inherently
difficult. Simpler alternatives, such as naive oversampling strategies or group-level balancing, are
inadequate for addressing fine-grained intersectional gaps and often lead to over-augmentation in some
groups while still neglecting others [15]. These imbalances can negatively affect model fairness, as our
experiments with naive oversampling demonstrate.

The problem of identifying MUPs has been shown to be NP-hard [9], making it infeasible to solve using
standard polynomial-time algorithms. While heuristic methods may provide partial improvements, they
do not offer control over which subgroups are affected or how many synthetic examples are generated.
In contrast, our ILP formulation allows us to target specific coverage deficits, ensuring that synthetic
records are only added where needed. This is especially important because synthetic data generation
is computationally expensive. Generating unnecessary records not only increases the cost but can
also distort the dataset and reintroduce bias. Our method avoids this by finding the minimal feasible
augmentation that meets all fairness constraints. Although the optimization layer adds complexity, it
ultimately reduces redundancy and helps produce a more balanced and efficient dataset. We believe
this trade-off is warranted given the gains in both representation and model fairness.

While our ILP formulation is tailored to optimize coverage gaps based on gender and ancestry,
the underlying principle is generalizable. Our focus on these two attributes was motivated by the
strong demographic imbalances observed in RE datasets and the fact that they are the only attributes
we could reliably extract from external sources such as Wikidata. In principle, additional attributes
such as age or occupation could be integrated by extending the ILP constraints to support higher-
dimensional demographic groups. However, doing so would introduce challenges in data extraction,
attribute sparsity, and scalability. We view our current work as a foundational step toward addressing
intersectional bias in RE, and plan to explore how our method can scale to more complex demographic
structures in future research.

5. Conclusion

This work tackles intersectional fairness in relation extraction (RE) datasets, addressing representation
bias that leads to disproportionate model errors for underrepresented groups. We propose Intersec-
tionRE to identify and mitigate demographic coverage gaps, ensuring balanced representation across
gender and ancestry while preserving linguistic and factual integrity. Empirical results show that our
augmentation strategy improves demographic representation, reduces performance disparities, and
enhances the REBEL model’s F1 score, especially for underrepresented groups. Our findings demonstrate
the effectiveness of structured augmentation in mitigating demographic bias. Future work should extend
this framework to include more attributes (e.g., age, profession), diversify demographic sources beyond
Wikidata, and move beyond binary gender classifications. Our approach offers a scalable, adaptable
method for promoting demographic fairness in RE, supporting more equitable AI systems.

6. Related Work

Bias in RE has been widely studied, particularly in terms of gender disparities. [9] introduced WikiGen-
derBias, showing that RE models exhibit gender-based performance gaps, particularly in occupation and
spouse-related relations. Beyond gender, [37] highlighted entity-level biases, where RE models overly
depend on entity mentions rather than textual context, proposing counterfactual inference (CORE) to
mitigate bias at inference time. While their approach aims at debiasing predictions, it does not address
bias in the training data itself. Additionally, [38] pointed out systematic biases in distantly supervised
datasets, arguing that traditional held-out evaluation methods misrepresent model fairness due to label
noise. More recently, [10] conducted a cross-dataset bias analysis, revealing that RE datasets often
underrepresent non-Western nationalities and female entities, leading to skewed model behavior.

While these studies primarily analyze and detect bias, our work takes a proactive approach by miti-
gating bias at the data level through coverage-driven augmentation. Unlike prior debiasing techniques
that either mask entity bias or adjust model inference, our method identifies and fills demographic gaps
in the dataset using ensuring a balanced, high-quality dataset for fairer RE models.



7. Generative AI Declaration

This work used GenAI tools in two ways. First, LLMs (e.g., ChatGPT) were used to assist in lightly editing
portions of the paper text with all technical content authored and reviewed by the researchers. Second,
GPT-4 was used as part of the experimental pipeline to generate synthetic relation extraction data, under
controlled prompts and validation protocols as described in the methodology. All GenAI-generated
content was created under direct author supervision and integrated with careful validation.
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