Creating a Commonsense Knowledge Base about Objects

Valerio Basile (University of Turin)

SAILab, Siena 12/2/2020

whoami

Valerio Basile

Assistant professor @ Unito Previously:

- PhD @ ŔUG Groningen
- Postdoc @ Inria

Computational Semantics, Semantic Web, Natural Language Generation, Information Extraction, Linguistic Annotation, Distributional Semantics, General Knowledge Bases, Gamification, Social Media, Sentiment Analysis, Legal Informatics, Argument Mining, Social Media, Hate Speech, ...

Today

Robotics and Artificial Intelligence

Objects

Linguistics and Semantics

Machine Learning and Clustering

Today

- Motivation: The Semantics of Objects
- I Objects, Knowledge and The Web
- III Objects, Words and Vectors
- IV Frames and Prototypical Knowledge
- V Default Knowledge about Objects

Part I Motivation: The Semantics of Objects

AUTONOMOUS LEARNING OF THE MEANING OF OBJECTS

5-year CHIST-ERA funded project (2014-2018)

4 EU partners

AUTONOMOUS LEARNING OF THE MEANING OF OBJECTS

Deploy **robots** in human-inhabited environments.

The robots autonomously collect real-world data.

We use information available on the Semantic Web to identify the semantics of objects.

AUTONOMOUS

OF THE MEANING

LEARNING

OF OBJECTS

AUTONOMOUS LEARNING OF THE MEANING OF OBJECTS

Perception and Identification

Robot deployments in office environments

The robot visits fixed waypoints on the map, taking full 360° RGB-D scans

- Object classification
- Room detection
- Frame detection
- Inference

...

Part II Objects, Knowledge and The Web

Object Knowledge

Classification What is (not) an object? What type is an object? What is a room?

Relations

How are objects related? Where is an object? What can I do with an object?

Linked Open Data

Web KBs

- DBpedia hub for LOD
- KnowRob smaller, manually crafted, robotic-oriented
- ConceptNet large, automatically built, not-LOD

The SUN database

BEDROOM 2117 images 1043 annotated 18331 objects

Definition (WordNet): A room in a house used primarily for sleeping

Objects

List of most common objects found in this place sorted by frequency.

Similar scenes

List of places with the most similar object distributions. The list is sorted by similarity.

Annotated images

https://groups.csail.mit.edu/vision/SUN/

Web KBs

	Taxonomy	Function	Location	Linked Data
DBpedia	v	×	×	1
ConceptNet	 Image: A second s	1	1	partly
KnowRob	1	1	partly	×
SUN	×	×	1	×

Keyword Linking Methods

Vector-based Contextual disambiguation

- Run String Match on the keywords
- Split the missed keywords into tokens
- Run String Match on the tokens
- Compute the semantic similarity of each token-entity with all the previously recognized entities
- Select the highest scoring token-entity

e.g., basket_of_banana \rightarrow dbr:Basket

The SUN database

Keyword	Entity	
Objects		
stand_clothes	dbr:Clothes_horse	
cold_meat	dbr:Lunch_meat	
tree_stem_3	dbr:Plant_stem	
deer	dbr:Deer	
instrument_control	dbr:Instrument_control	
volcano	dbr:Volcano	
bass_drum	dbr:Bass_drum	
building_arch	dbr:Arch	
oyster_bank	dbr:Oyster_reef	
observatory	dbr:Observatory	
Scenes		
c/childs_room	dbr:Nursery_(room)	
o/oil_refinery/indoor	dbr:Oil_refinery	
m/mobile_home	dbr:Mobile_home	
o/oyster_farm	dbr:Oyster_farming	
z/zoo	dbr:Zoo	
c/canteen	dbr:Cafeteria	
d/donjon	dbr:Keep	
p/parking_garage/indoor	dbr:Garage_(residential)	
d/day_care_center	dbr:Day_care	
s/skywalk/outdoor	dbr:Skyway	

Part III Objects, Words and Vectors

Object Knowledge

Problem

Classification is good, but relations are sparse

Distributional Relational Hypothesis

isa(E1, A) Λ isa(E2, B) Λ S(E1, E1) \rightarrow R(A, B)?

Semantic Relatedness

QUESTION

Is it legal to fit a washing machine in the bathroom?

washing machine, washer, automatic washer

A home appliance for washing clothes and linens automatically ID: 00007365n | Concept

bathroom, bath, full bathroom A room (as in a residence) containing a bathtub or shower and usually a washbasin and toilet

Hi all, I would like to fit washing machine in the the bathroom The power cable will be fed through a small hole in the wall with the outlet socket on the outside of the bathroom and the machine will be +1200mm from the edge of the bath and 500mm from the toilet. My question is, is this legal?

Asked by: edward_88 29th Dec, 2012 Electrical AddThis

Co-occurrence matrix

	Washing_machine	Ashtray
Bathroom	5	2
Bedroom	0	1
Living_room	1	6

Singular value decomposition

 $M = U \Sigma V^*$

Low-rank approximation $U_k \Sigma_k V_k^* = M_k$

NASARI: A Novel Approach to a Semantically-Aware Representation of Items (Camacho-Collados, Pilehvar and Navigli, 2015)

sim(Bathroom, Washing_machine) = $\cos(\alpha) \approx 0.71$ sim(Bathroom, Ashtray) = $\cos(\beta) \approx 0.37$

Place Classification

= Cosine similarity on NASARI

+ aggregation, weighting by distance, ...

Evluation: locatedAt

Gold standard: SUN database linked to DBpedia

Evluation: usedFor

Gold standard: ConceptNet linked to DBpedia

Results

931 high confidence location relations Only 52 were in the gold standard set E.g.: Trivet → Kitchen Flight_bag → Airport_lounge Soap dispenser → Unisex public toilet

+ many related datasets: https://project.inria.fr/aloof/data/

Distributional Relational Hypothesis

Object-action relation (usedFor)

Extracting common sense knowledge via triple ranking using supervised and unsupervised distributional models S Jebbara, V Basile, E Cabrio, P Cimiano, Semantic Web 2018

Improving object detection

Semantic web-mining and deep vision for lifelong object discovery J Young, L Kunze, V Basile, E Cabrio, N Hawes, B Caputo Robotics and Automation, ICRA 2017

Object-location relation (locatedAt)

Populating a knowledge base with object-location relations using distributional semantics V Basile, S Jebbara, E Cabrio, P Cimiano, EKAW 2016

Part IV Frames and Prototypical Knowledge

Problem

The distributional relational hypothesis is limited to specific relations

Frame Semantics

FrameNet (1997), Framester (2016), Framebase (2015)

Frame Instance

Default Knowledge \rightarrow Prototypical Frame Instances F.I. extraction + F.I. clustering

Knowledge Extraction

https://github.com/valeriobasile/learningbyreading

Frame Instance Extraction

```
<frameinstance id="Operate vehicle ce746f21 2d8d 4fe8 8981</pre>
df95c9b0eb07" type="Operate vehicle drive.v" internalvariable="e1">
    <framelexicalization>k3:x1 is driving k3:x2</framelexicalization>
    <instancelexicalization>
      The robot is driving the car .
    </instancelexicalization>
    <frameelements>
      <frameelement role="Driver" internalvariable="x1">
        <concept>
           http://dbpedia.org/resource/Robot
        </concept>
        <rolelexicalization>
           The robot is driving x2
        </rolelexicalization>
        <conceptlexicalization>The robot</conceptlexicalization>
      </frameelement>
      <frameelement role="Vehicle" internalvariable="x2">
        <concept>
          http://wordnet rdf.princeton.edu/wn31/02961779 n
        </concept>
        <rolelexicalization>
          x1 is driving the car .
        </rolelexicalization>
        <conceptlexicalization>the car .</conceptlexicalization>
      </frameelement>
    </frameelements>
 </frameinstance>
```

Frame Similarity

frame types

Frame Similarity

frame elements

Frame Similarity

 $fisim(fi_1, fi_2) =$ $= \alpha ftsim(fi_1, fi_2) + (1 - \alpha) fesim(fi_1, fi_2)$ $ftsim_{occ}(fi_1, fi_2) = log_2 \frac{|C_{ft_1, ft_2}|}{|C_f t_1| |C_f t_2|} \quad (2) \qquad C_{ft_i} = \{c \in C : \exists l_{ft_i} \in c\} \\ C_{ft_1, ft_2} = \{c \in C : \exists l_{ft_1} \in c \land \exists l_{ft_2} \in c\}$ $fesim(fi_1, fi_2) =$ $= \frac{1}{2} \Big(\frac{1}{|fi_1|} \sum_{fe_j \in fi_1} \max_{fe_j \in fi_2} csim(fe_i, fe_j) + \Big)$ $+\frac{1}{|fi_2|} \sum_{f_{e_j} \in fi_1} \max_{fe_j \in fi_1} csim(fe_i, fe_j) \Big) \quad (4)$

Measuring Frame Instance Relatedness V. Basile, R. Lopez Condori, E. Cabrio *SEM 2018 (accepted)

Pilot Study

Text for language learners (1,653 short stories)

114,536 frame instances, 154,422 frame elements, 686 frame types, 222 roles filled by 3,398 types of concepts.

Hierarchical clustering with our distance metric: complete-linkage agglomerative (SciPy)

Frame Instance Extraction and Clustering for Default Knowledge Building A. Shah, V. Basile, E. Cabrio, S. Kamath S. Applications of Semantic Web technologies in Robotics – ANSWER 17

Pilot Study

Similarity metric	Frame types	Frame elements
Based on frame types	Commerce_buy (75)	Goods thing-n#8-n (11)
$(\alpha = 1)$		$Goods \operatorname{star+sign-n}\#1-n$ (4)
		Goods ticket-n#1-n (3)
		Goods book-n#1-n (2)
		Goods clothes-n#1-n (2)
		Goods placard-n#1-n (2)
		Goods cycle-n#6-n (2)
		Buyer thing-n#8-n (2)
		Goods machine-n#6-n (2)
		Goods shirt-n#1-n (2)
		Goods filter-n#2-n (2)
		Goods pellet-n#2-n (2)
		Buyer male-n#2-n (2)
Based on frame elements	Stimulus_focus (8)	vn-Theme book-n#1-n (24)
$(\alpha = 0)$	Categorization (4)	Item book-n#1-n (4)
	Hear (4)	vn-Patient book-n#1-n (2)
	Reading (4)	
	Reading_aloud (4)	

Pilot Study

Most frequent frame type, role and element from each cluster

<http://framebase.org/fbframe/Ride_vehicle> <http://framebase.org/fbfe/Vehicle> <http://wordnet-rdf.princeton.edu/wn31/02837983-n>

~300 triples, available at http://project.inria.fr/aloof/data/

Part V Default Knowledge about Objects

Default Knowledge about Objects

http://deko.inria.fr/

RDF dataset of common sense knowledge about objects.

Object classification, prototypical location, actions, frames...

Knowledge extracted from parsing, crowdsourcing, distributional semantics, keyword linking

Default Knowledge about Objects

http://deko.inria.fr/

10,990 nquads (named graphs)

603 from crowdsourcing

1,221 from distributional relational hypothesis

8,046 from keyword kinking

1,120 from KNEWS/frame instance clustering

+ DeKO ontology

<http://dbpedia.org/resource/Knife> a ns1:Object ; ns1:locatedAt <http://dbpedia.org/resource/Beer hall>, <http://dbpedia.org/resource/Dining car>, <http://dbpedia.org/resource/Dining room>, <http://dbpedia.org/resource/Galley>, <http://dbpedia.org/resource/Kitchen>, <http://dbpedia.org/resource/Restaurant> ; ns1:usedFor <http://dbpedia.org/resource/Carving>, <http://dbpedia.org/resource/Collecting>, <http://dbpedia.org/resource/Cooking>, <http://dbpedia.org/resource/Coring>, <http://dbpedia.org/resource/Counting>, <http://dbpedia.org/resource/Eating>, <http://dbpedia.org/resource/Engraving>, <http://dbpedia.org/resource/Gashing>, <http://dbpedia.org/resource/Hunting>, <http://dbpedia.org/resource/Mashing>, <http://dbpedia.org/resource/Notching>, <http://dbpedia.org/resource/Pricking>, <http://dbpedia.org/resource/Scratching>, <http://dbpedia.org/resource/Shaving>, <http://dbpedia.org/resource/Spearing>, <http://dbpedia.org/resource/Throwing>, <http://dbpedia.org/resource/Turning>, <http://dbpedia.org/resource/Writing> .

Left out

- ... but open for discussion
- Fundational distinctions

Class vs. Instance in DBpedia Asprino L., Basile V., Ciancarini P., Presutti Empirical Analysis of Foundational Distinctions in Linked Open Data (IJCAI 2018)

• Nature of prototypical relations Default Logic and RDF

- Valerio Basile, Elena Cabrio, Fabien Gandon, Debora Nozza: Mapping Natural Language Labels to Structured Web Resources NL4AI 2018
- Valerio Basile, Roque Lopez Condori, Elena Cabrio: Measuring Frame Instance Relatedness.
 *SEM 2018
- Soufian Jebbara, Valerio Basile, Elena Cabrio, Philip Cimiano (2018): Extracting common sense knowledge via triple ranking using supervised and unsupervised distributional models Semantic Web
- Avijit Shah, Valerio Basile, Elena Cabrio, Sowmya Kamath S.: Frame Instance Extraction and Clustering for Default Knowledge Building. AnSWeR 2017.
- Jay Young, Valerio Basile, Markus Suchi, Lars Kunze, Nick Hawes, Markus Vincze, Barbara Caputo:

Making sense of indoor spaces using semantic web mining and situated robot perception ESWC 2017

- Jay Young, Lars Kunze, Valerio Basile, Elena Cabrio, Nick Hawes, Barbara Caputo: Semantic Web-Mining and Deep Vision for Lifelong Object Discovery. ICRA 2017
- Valerio Basile, Soufian Jebbara, Elena Cabrio, Philipp Cimiano: Populating a Knowledge Base with Object-Location Relations Using Distributional Semantics EKAW 2016
- Jay Young, Valerio Basile, Lars Kunze, Elena Cabrio, Nick Hawes: Towards Lifelong Object Learning by Integrating Situated Robot Perception and Semantic Web Min ing ECAI 2016
- Valerio Basile, Elena Cabrio, Fabien Gandon: Building a General Knowledge Base of Physical Objects for Robots. ESWC 2016