Computational Linguistics against Hate: Resources, Models, and Evaluation to Monitor and Contrast Abusive Language Online

Valerio Basile CISA Seminar Edinburgh, December 2nd 2019

> whoami

University of Turin, Italy

PhD Groningen 2015

PostDoc Inria Sophia Antipolis

> whoami

University of Turin, Italy

PhD Groningen 2015

PostDoc Inria Sophia Antipolis

Outline

Hate Speech Detection: definition and evaluation

More than hate: abusive, offensive, hateful language and bias

Al and humans:

cultural background and polarization of opinion

Hate Speech Monitoring Group

Viviana Patti Cristina Bosco ...many more

contro-l'odio-

https://hatespeech.di.unito.it

Hate Speech Monitoring Group

Italian Hate Speech Corpus

6.000 tweets annotated by experts on:

- Hate Speech (binary)
- Aggressiveness
- Offensiveness
- Stereotype
- Irony

https://github.com/msang/hate-speech-corpus

HS Definitions

From Sanguinetti and Poletto:

- addressed, or just refer to, one of the minority groups identified as HS targets, or to an individual considered for its membership
- spreading, inciting, promoting or justifying violence against a target.

Definition
"All conduct publicly inciting to violence or hatred directed against
a group of persons or a member of such a group defined by reference
to race, colour, religion, descent or national or ethnic" [79]
"Hate speech is public expressions which spread, incite, promote or
justify hatred, discrimination or hostility toward a specific group.
They contribute to a general climate of intolerance which in turn
makes attacks more probable against those given groups." [42]
"Language which attacks or demeans a group based on race, ethnic
origin, religion, disability, gender, age, disability, or sexual
orientation/gender identity." [58]

Evaluation Campaigns

EVALITA 2018 Two tasks on HS

AMI – Automatic Misogyny Identification

HaSpeeDe – Hate Speech Detection

http://www.evalita.it/2018/tasks

#1 on Spanish AMI (EN and ES) Alessandra Cignarella and Endang Pamungkas

HatEval 2019

- Shared task #5 at SemEval 2019
- Hate Speech detection on tweets
- Languages: English, Spanish
- Targets: Immigrants, Women
- 108 runs from 74 teams

Together with C. Bosco, V. Patti, M. Sanguinetti, P. Rosso, F. Rangel, D.Nozza, E.Fersini

HatEval 2019: annotation

Two-level annotation

- HS a binary value indicating if HS is occurring against one of the given targets
- Target Range if HS occurs, a binary value indicating if the target is a generic group of people or a specific individual.
- Aggressiveness if HS occurs, a binary value indicating if the tweeter is aggressive or not.

HatEval 2019: annotation

HatEval 2019: annotation

HatEval 2019: examples

[hateful]

[id: 32411] Cállate @ y la
 gran puta madre que te repario. Que le
 diste a la poltica...nada. Basura.
 Shut up @ you motherfucker. What
 did you do for politics... nothing. Trash.⁹

[non-hateful]

[id: 33033] @ This is inhumane S Karma is a bitch she II get around these brainless heartless assholes!

⁹The target of the misogynistic hate here is Victoria Donda Prez, an Argentinian woman, human rights activist and member of the Argentine National Congress (mentioned in the at-mention of the original tweet).

HatEval 2019: examples

[Individual]:

[id: 4723] @ Come on box I show you my cock darling

[Generic]:

[id: 5823] Women are equal and deserve respect. Just kidding, they should suck my dick.

HatEval 2019: examples

[Aggressive]

[id:1890] Sick barstewards! This is what happens when we put up the refugees welcome signs! They not only rape our wives or girlfriends, our daughters but our ruddy mothers too!! https://t.co/XAYLr6FjNk

[Non-Aggressive]

[id: 945] @EmmanuelMacron Hello?? Stop groping my nation.Schneider: current migrant crisis represents a plan orchestrated and prepared for a long time by international powers to radically alter Christian and national identity of European peoples.http

HatEval 2019: evaluation

per-class

macro

 $Accuracy = \frac{number \ of \ correctly \ predicted \ instances}{total \ number \ of \ instances}$

 $Precision = \frac{number \ of \ correctly \ predicted \ instances}{number \ of \ predicted \ labels}$

 $Recall = \frac{number \ of \ correctly \ predicted \ labels}{number \ labels \ in \ the \ gold \ standard}$

 $F_{1}\text{-score} = \frac{2 \times Precision \times Recall}{Precision + Recall}$

$$F_1$$
-score = $\frac{F_1(HS) + F_1(AG) + F_1(TR)}{3}$

$$\mathit{EMR} = \frac{1}{n} \sum_{i=1}^{n} I(Y_i, Z_i)$$

HatEval 2019: results

Best systems: RNNs (LSTM, GRU), Transformer

Spanish better than English (?)

Best recall on EN \sim = 0.5

Task B EN: all systems below MFC!

Complains of big drop in training \rightarrow test metrics

https://docs.google.com/spreadsheets/d/1wS FKh1hvwwQIoY8_XBVkhjxacDmwXFpkshYzLx4bw-0/ edit#gid=503116726

Words and meanings

All in all it's just another brick in the **wall**

We're going to build that **wall**

Weirdness Index

Given an general and a specific corpora

$$Weirdness(w) = \frac{w_s/t_s}{w_g/t_g}$$

w_g frequency of w in the specific corpus w_g frequency of w in the general corpus t_g total count of words in the specific corpus t_g total count of words in the general corpus

Financial vs. BNC: dollar, government, market From: Ahmad et al., 1999

Polarized Weirdness

Specific \rightarrow subset determined by a class General \rightarrow its complement

Example

- Classes = {positive, negative}
- 100 instances: 50 positive and 50 negative
- 3,000 words in instances labeled positive
- 2,000 words in instances labeled negative
- good occurs 50 times in positive instances
- good occurs 5 times in negative instances

$$PW_{positive}(good) = 6.66$$

 $PW_{negative}(good) = 0.15$

Weird HS words

Top 20 weird words in English HatEval nodaca, enddaca, kag, womensuck, @hillaryclinton, americafirst, trump2020, taxpayers, buildthewallnow, illegals, @senatemajldr, dreamer, buildthewall, they, @potus, walkawayfromdemocrat, votedemsout, wethepeople, illegalalien, backtheblue.

Top 20 weird words in the Male GxG set costituzionale, socialisto (socialist), Lecce, DALLA, utente, Samp, Sampdoria, Nera, allenatore, Orlando, Bp, ni, maresciallo, garanzia, cerare, voluto, pilotare, disco, caserma, From

Word Embedding Adaptation

$$\vec{v}_1 = \frac{pw_1}{pw_1 + pw_2} \cdot \vec{v}_2 + \frac{pw_2}{pw_1 + pw_2} \cdot \vec{v}_1$$

$$\vec{v}_2 = \frac{pw_2}{pw_1 + pw_2} \cdot \vec{v}_1 + \frac{pw_1}{pw_1 + pw_2} \cdot \vec{v}_2$$

 v_i vector representation of w_i

pw, polarized weirdness of w, wrt. Positive class (detection)

Experimental Evaluation

- CNN 64x8 hidden layer, ReLU activation, 4-size max pooling, ADAM optimization
- learning rate between 10⁻² and 10⁻³ epochs between 10 and 25
- Keras (Python) mygithub://dnnsentenceclassification
- Polyglot word embeddings (Al-Rfou et al., 2013)
 64 dimensions, multilingual

Results I: Hate Speech Detection

Table 1: Results of the English Hate Speech Detection experiment.

		no-HS			HS			Avg.
Model	Acc.	Pr.	R.	F1	Pr.	R.	F1	F1
CNN	.528	.592	.595	.594	.437	.434	.436	.515
CNN+W	.527	.614	.497	.549	.450	.568	.502	.527

Table 2: Results of the Spanish Hate Speech Detection experiment.

		no-HS			HS			Avg.
Model	Acc.	Pr.	R.	F1	Pr.	R.	F1	F1
CNN	.468	.567	.401	.470	.398	.564	.466	.468
CNN+W	.482	.588	.394	.472	.413	.608	.492	.482

Weird Explainability

Table 1: Examples of words from the HatEval datasets, showing how their vector representation moves to reflect the semantic shift. Particular words that are generally neutral get closer to offensive words in the hate speech context.

Word embeddings	Generic word	Offensive word	Semantic shift	Cosine distance
Polyglot EN	wall	fuck	yes	1.224
Polyglot EN + P.W.	wall	fuck	yes	0.444
Polyglot EN	car	fuck	no	1.279
Polyglot EN + P.W.	car	fuck	no	1.413
Polyglot ES	directora (director (F))	puta (whore)	yes	1.271
Polyglot ES + P.W.	directora (director (F))	puta (whore)	yes	1.222
Polyglot ES	director (director (M))	puta (whore)	no	1.366
Polyglot ES + P.W.	director (director (M))	puta (whore)	no	1.411

Wiegand et al. 2019

On bias in datasets and how to correct it.

Explicit vs. Implicit abuse/hate

rank	Founta	Waseem
1	bitch	commentator
2	niggas	comedian
3	motherfucker	football
4	fucking	announcer
5	nigga	pedophile
6	idiot	mankind
7	asshole	sexist
8	fuck	sport
9	fuckin	outlaw
10	pussy	driver

Table 2: Top 10 words having strongest correlation with abusive microposts according to PMI on *Founta* (dataset representing almost random sample) and *Waseem* (dataset produced by biased sampling).

Feature Set	Prec	Rec	F1
all words	80.91	80.08	80.49
(ii) query words removed	76.65	76.02	76.33
(i) topic words removed	75.07	74.41	74.72

Table 3: Impact of removing specific words from classifier trained and tested on *Waseem*.

OLID and OffensEval

Offensive Language Identification Dataset (Zampieri et al. 2019)

Used for SemEval 2019 task 6: OffensEval

Table 1: OLID statistics per class: number of messages, average message length in tokens, average Offensive Prior. Asterisks mark statistical significance differences (p < 0.05). OFF = offensive; NOT = not offensive.

Class	Stats	Train	Test
	# messages	4,400	240
OFF	Avg. Length (token)	24.88^{*}	25.91
	Offensive Prior (avg.)	0.2547*	0.2306*
	# messages	8,840	620
NOT	Avg. Length (token)	21.90	28.10
	Offensive Prior (avg.)	0.0614	0.0370

OLID lexicon analysis

Table 2: OLID top 10 keywords per class

Top keywords with TF-IDF	Class	Train	Test
		unepic	davidhogg
		sociopath	bitch
Mostly swear words		shit	female
		witch	fuck
\rightarrow explicit	OFF	pussy	clown
	011	omfg	oh
		silly	potus
SWs in NOT class too		sucks	extremely
5 W 5 11 11 C 1 C 10 55 10 0		monster	racist
		terrible	5k
		woman	nickidagoat
		victim	dicks
		wtf	fucking
		weather	lack
Joint work with T. Caselli and J. Mitrovic	NOT	yesterday	smack
	NOT	way	better
		xx	revolting
		yo	literally
		vile	titty
		welcome	11

Dictionary-based classification

Reimplementation of Duluth approach Based on lexicon by Wiegand et al. 2018

Table 3: OffensEval - Test: Evaluation of dictionary-basedOffensEval ranking:system and comparison against NULI, Duluth, and SVMOffensEval ranking:baseline.

Approach	Class	Р	R	F1 (macro)	
Dictionary	NOT	.836	.872	.722	— 6) Duluth
Dictionary	OFF	.629	.558	.122	
	NOT	.902	.908	020	
NULI	OFF	.758	.745	.828	
Duluth	NOT	.832	.900	725	
Duluth	OFF	.673	.533	.735	
SVM	NOT	.800	.920	600	
5 V IVI	OFF	.660	.430	.690	

Explicit vs. Implicit

Explicit vs. Implicit

Table 4: OffensEval: Explicit vs. Implicit offensive messages. EXP = EXPLICIT; IMP = IMPLICIT.

Data distribution	Class	Messages
Train	EXP	2901
Iram	IMP	1499
Test	EXP	154
lest	IMP	86

- large overlap
 between OFF and EXP
- surprising amount of OFF NOTABU
- not negligible portion of abusive (EXP or IMP) untargeted

Table 5: AbuseEval v1.0: annotated data and annotation overlap with OLID/OffensEval. OLID/OffensEval labels: OFF = offensive; TIN = target; UTN = not targeted; NOT = not offensive. AbuseEval v1.0 labels: EXP = explicitly abusive; IMP = implicitly abusive; NOTABU = not abusive.

Data I	Distribution	OFF	TIN	UTN	NOT
	EXP	2,023	1,887	136	0
Train	IMP	726	668	58	0
	NOTABU	1,651	1,321	330	8,840
	EXP	106	103	3	0
Test	IMP	72	70	2	0
	NOTABU	62	40	22	620

Explicit vs. Implicit

BERT model fine-tuned on the Implicit/Explicit annotation of OffenseEval and AbuseEval (threelabel classification)

Table 7: Results of the experiments on the Implicit vs. Explicit distinction.

Data set	Class	Р	R	F1 (macro)
	NOT	$.868\pm.023$	$.867 \pm .035$	
OffenseEval	IMP	$.240\pm.059$	$.225\pm.156$	$.614 \pm .157$
	EXP	$.637 \pm .029$	$.671\pm.028$	
	NOTABU	$.864\pm.019$	$.936\pm.013$	
AbuseEval	IMP	$.234\pm.086$	$.098\pm .092$	$.535\pm.023$
	EXP	$.640\pm.060$	$.509 \pm .135$	
Offensive, Abusive, Hateful

So what is the relationship between these phenomena?

Offensive, Abusive, Hateful

So what is the relationship between these phenomena?

Experiment with "vanilla" pre-trained BERT

Table 8:	Results	of the	cross-domain	experiments.
----------	---------	--------	--------------	--------------

Training set	Class	Р	R	F1	~#7
HotEvol	NOT	$.877\pm.021$	$.254\pm.053$	$.514 \pm .033$	
HatEval	HS	$.479\pm.012$	$.950\pm.022$	$.514 \pm .055$	
OffenseEval	NOT	$.665\pm.068$	$.402\pm.091$	$.528 \pm .016$	
OffenseEval	HS	$.462\pm.025$	$.712\pm.170$	$.520 \pm .010$	_
AbuseEval	NOT	$.661\pm.047$	$.672 \pm .134$.591 ±.023	_
	HS	$.531\pm.031$	$.510\pm.182$.591 ±.025	#0
					$\sim \mathbf{I}'$

Words matter

Phenomena matter

And the human?

The Human Factor

Datasets are made by humans.

Ethnicity and social background of the annotators may reflect their judgments in annotations.

Diverging opinions by annotators are valuable source of information for better training sets. (previous work: Aroyo and Welty; Checco et al.)

The Polarization Index

- Assuming a split into K groups of annotators
- P is high when
 - Intra-group agreements are high
 - Inter-group agreement is low

$$a(G_i) = 1 - \frac{\chi^2(G_i)}{|M|} \qquad P(i) = \frac{1}{k} \sum_{1 \le w \le k} a(G_i^w)(1 - a(G_i))$$
(a) (b)

Different from agreement!

PhD work of Sohail Akhtar

Polarization: Pilot Study

- HS Dataset on Brexit (119 tweets)
- 6 annotators in 2 groups:
 - Target: Immigrants, Muslims
 - Control: western background

Polarization: Pilot Study

Fleiss Kappa Measure for all Annotators					
Hate Speech Aggressiveness Offensiveness Stereotype					
0.35	0.21	0.30	0.20		

F				
Hate Speech	Aggressiveness	Offensiveness	Stereotype	Control
0.54	0.36	0.38	0.16	

Fleiss Kappa Measure for Group 2				
Hate Speech	Aggressiveness	Offensiveness	Stereotype	Target
0.54	0.24	0.39	0.30	

Polarization: Pilot Study

Intra-group vs. inter-group agreement

	C2	C3	T1	Т2	Т3
C1	0.6	0.52	0.22	0.23	0.33
C2		0.52	0.16	0.18	0.26
C3			0.24	0.24	0.36
T1				0.69	0.52
T2					0.4

Data Augmentation Experiment

- Compute the P-index of every instance
- Instances with high polarization are filtered out
- Low polarization instances are replicated

Data from Waseem and Hovy 2017 + new dataset ACCEPT

Table 1. Datasets used in the experiments with distribution of the labels.

Dataset	Positive class	Negative class	Total
Sexism	810	5,551	6,361
Racism	100	6,261	6,361
Homophobia	224	$1,\!635$	1,859

Data Augmentation Experiment

Table 2. Results of the prediction on Sexism dataset (1700 features).

Classifier	Accuracy	Precision	Recall	F1
SVM	95.11	87.60	71.60	78.74
SVM+P-max filter	95.13	86.40	73.01	79.11
SVM+replication	95.27	87.01	73.40	79.67
SVM+P-max filter+replication	95.27	86.60	74.01	79.83

Table 3. Results of the prediction on Racism dataset (1700 features).

Classifier	Accuracy	Precision	Recall	F1
SVM	98.55	55.40	11.01	18.40
SVM+P-max filter	98.58	59.01	12.01	19.88
SVM+replication	98.61	70.01	19.60	29.49
SVM+P-max filter+replication	98.61	69.80	19.80	29.74

Table 4. Results of the prediction on Homophobia dataset (3500 features).

Classifier	Accuracy	Precision	Recall	F1
SVM	88.81	61.01	11.40	19.02
SVM+P-max filter	88.81	63.60	13.60	22.30
SVM+replication	86.55	50.40	18.40	26.83
SVM+P-max filter+replication	87.63	47.90	26.20	33.67

Qualitative Analysis

By ranking the instances of a dataset by P-index, the most polarizing tweets emerge at the top

The vast majority of the tweets with P = 1 contain mixed remarks:

@****** uh... did you watch the video? one of the women talked about how it's assumed she's angry because she's latina.

Humour is highly polarizing

Another #Arab car #terror attack in #Jerusalem #Israel. Will #Obama call it random traffic infringement? http://t.co/xxxxxxx

Topics in the ACCEPT data: gender theories and their education in school, family values

Conclusions (1)

Text classification alone is **limited** towards the understanding of these complex phenomena

Conclusions (2)

We need to start thinking about who is producing data for Al

What now?

Hate is a product of people People are not islands